Авторизация
Поиск по указателям
Akivis M., Goldberg V. — Differential Geometry of Varieties with Degenerate Gauss Maps
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Differential Geometry of Varieties with Degenerate Gauss Maps
Авторы: Akivis M., Goldberg V.
Аннотация: In this book the authors study the differential geometry of varieties with degenerate Gauss maps. They use the main methods of differential geometry, namely, the methods of moving frames and exterior differential forms as well as tensor methods. By means of these methods, the authors discover the structure of varieties with degenerate Gauss maps, determine the singular points and singular varieties, find focal images and construct a classification of the varieties with degenerate Gauss maps.The authors introduce the above mentioned methods and apply them to a series of concrete problems arising in the theory of varieties with degenerate Gauss maps. What makes this book unique is the authors' use of a systematic application of methods of projective differential geometry along with methods of the classical algebraic geometry for studying varieties with degenerate Gauss maps. This book is intended for researchers and graduate students interested in projective differential geometry and algebraic geometry and their applications. It can be used as a text for advanced undergraduate and graduate students. Both authors have published over 100 papers each. Each has written a number of books, including Conformal Differential Geometry and Its Generalizations (Wiley 1996), Projective Differential Geometry of Submanifolds (North-Holland 1993), and Introductory Linear Algebra (Prentice-Hall 1972), which were written by them jointly.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2004
Количество страниц: 255
Добавлена в каталог: 10.06.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Rectilinear generator of dual variety of curve 73
Rectilinear generator of hypercubic 107 113 122
Rectilinear generator of hypersurface with degenerate Gauss map 73
Rectilinear generator of lightlike hypersurface 183
Rectilinear generator of quadric 65
Rectilinear generator of Sacksteder — Bourgain hypersurface 117
Rectilinear generator of twisted cone 154
Rectilinear generator of variety with degenerate Gauss map 215
Recurrent differential equation 32
Reduced first normal subspace 57
Reducible system of matrices 165
Reducible variety with degenerate Gauss map 165 ff.
Regular pencil of second fundamental forms 150
Regular point 50 63 92 93 99 151
Regular point of lightlike hypersurface 186
Regular point of mapping 8
Regular variety 127
Regular variety, complete 118
Relative invariant 5
Relative tensor 4
Relative tensor, law transformation of 5
Relative vector 4
Representation of projective plane over algebra 210
Representation, space of GL(n) 18
Reye 123 233
Ricci tensor 181
Riemannian geometry 96
Riemannian manifold 88
Riemannian space of constant curvature 63 88 134
Riemannian space of constant curvature, elliptic 126—128
Riemannian space of constant curvature, Euclidean see Euclidean space
Riemannian space of constant curvature, hyperbolic 126—128
Ring of smooth functions 9
Rogora xv 88 134 172 233
Rosenfeld 23 90 207 210 219 233 234
Roth 45 47 235
Ruled hypersurface 112
Ruled surface 163
Ruled variety 88
Ryzhkov xiv xv 87 223 234
Sacksteder 89 116 134 154 234
Sacksteder — Bourgain hypersurface 116 ff. 134 162
Sacksteder — Bourgain hypersurface, generators of 116
Safaryan 172 234
Sasaki xvii 47 84 172 232 234
Savelyev xiv xv 87 234
Scalar product 27 205
Schafer 219 234
Secant subspace 44
Second fundamental form(s) of focus surface 157
Second fundamental form(s) of Grassmannian 60
Second fundamental form(s) of hypersurface 61
Second fundamental form(s) of normalized variety 199
Second fundamental form(s) of Segre variety 75
Second fundamental form(s) of variety 55—57 61 93 204
Second fundamental form(s) of with degenerate Gauss map 87 98 100 141 142 150—154
Second fundamental tensor of hypersurface 61 141
Second fundamental tensor of variety 54 61 93 199 204
Second normal subspace 57
Second normal(s) 199
Second osculating subspace of Grassmannian 60
Second osculating subspace of variety 56
Second-degree curve 79
Second-order frame(s) 18 22 56 155
Second-order hypercone 108 113 191
Secondary forms 7 30 37 160
Secondary parameters 7 29 37
Segre cone 44 61 87
Segre cone, dimension of 44
Segre cone, director manifold of 61
Segre cone, vertex 61
Segre theorem 63 86 142 171
Segre theorem, generalized 63 86 151 171
Segre variety 44 51 47 61 74
Segre variety, dual defect of 71
Segre variety, plane generator(s) of 61
Segre, C. 47 63 86 87 171 234 235
Semple 45 47 235
Serret 47 235
Severi 47 235
Sextactic point 35
Shafarevich 50 235
Shcherbak xv 235
Simple bundle of hyperplanes 138 140
Simple dyad 44
Simple hyperplane 140 168
Simple plane 138 144
Simple torse 138—140 144
Simply connected curve 28
Simply connected domain 5 126
Simply connected Riemannian space 126
Singular hyperplane 101
Singular point(s) 50 100 183 213 214
Singular point(s) of cubic 35
Singular point(s) of cubic symmetroid 78 79
Singular point(s) of hypercubic 85 106 107 111
Singular point(s) of lightlike hypersurface 146 186 195
Singular point(s) of mapping 8
Singular point(s) of Monge — Ampere foliation 96
Singular point(s) of Sacksteder — Bourgain hypersurface 117 122
Singular point(s) of variety with degenerate Gauss map 215
Singularity 65 88 96 127
Singularity, real 106
Skewed straight line 209
Small dual variety 89
Smooth curve 5 28 66 73 80
Smooth irreducible variety 87
Smooth line 214 219
Smooth point 50 71
Sommese 89 223
Space of constant curvature 63 88 126
Space, affine see affine space
Space, cotangent 22
Space, dual see dual space
Space, elliptic see elliptic space
Space, Euclidean see Euclidean space
Space, homogeneous 25 47 90
Space, hyperbolic 126—128
Space, non-Euclidean see non-Euclidean space
Space, projective see projective space
Space, pseudo-Riemannian 88
Space, Riemannian of constant curvature 87 126
Space, tangent see tangent space
Space, vector see vector space
Spacelike focal variety 190
Spacelike hyperplane 178
Spacelike hypersurface 176
Spacelike line 178
Spacelike subspace 188
Spacelike variety 188 191
Spatial curve 73
Special linear group 21
Special orthogonal group 181
Specialization of moving frame 28 ff. 159
Sphere 53
Spherical generator 190 191
Spherical map 53
Standard covering 123
Standard leaf 96
Stationary subgroup of planar element 52
Steiner 123 235
Sternberg 133 149 235
Stoker xi xx 172 235
Stokes theorem 12
Straight line 29
Straight line of projective space 20
Strongly parabolic variety 88
Structure equations of affine space 26 203
Structure equations of differentiable manifold 16—17
Structure equations of Euclidean space 27
Structure equations of general linear group 12 18
Structure equations of manifold with affine connection 19
Structure equations of projective plane 28
Structure equations of projective space 21
Structure theorems 169
Strupa 89 231
Subgroup of isotropy transformations 26
Subgroup of parallel displacements 26
Subspace(s) 20 41 65
Subspace(s), basis points of 41
Subspace(s), differential equations of 12
Subspace(s), osculating of focal line 169
Subspace(s), osculating of focal surface 164
Subspace(s), osculating of Grassmannian 60
Subspace(s), osculating of hypersurface 61
Subspace(s), osculating of variety with degenerate Gauss map 86 101 102 129 136 170 171
Subspace(s), projective 64
Subspace(s), tangent see tangent subspace
Summation notation 1
Support curve 164
Support submanifold 194
Surface(s), developable 64 87 133 172
Surface(s), minimal 88
Surface(s), parabolic 127 128
Surface(s), ruled 163
Surface(s), Veronese 45 46 79
Surjective mapping 8
Symbol of differentiation with respect to secondary parameters 29 193
Symmetric embedding 45
Symmetric matrix 152
Symmetrization 42
System of matrices, completely reducible 165
System of matrices, irreducible 165
System of matrices, reducible 165
System of Pfaffian equations in involution 13 46 157 158 163
System of Pfaffian equations, completely integrable 13 16
System of second fundamental forms 75 98 101
System of second fundamental tensors 99
System, completely integrable 13 16
Tangent bundle 6 72 73
Tangent bundle of normalized variety 201
Tangent bundle, dimension of 6
Tangent bundle, element of 6
Tangent hypersphere 186
Tangent space 6 15 22
Tangent space, natural projection of 6
Tangent to curve 28
Tangent vector 6 15
Tangent vector, coordinates of 6 15
Tangent, developable 64
Tangent, hyperplane 71
Tangent, hyperplane, to cubic symmetroid 77 78 80
Tangent, hyperplane, to hypersurface with degenerate Gauss map 151
Tangent, subspace to, almost everywhere smooth variety 71
Tangent, subspace to, dual variety 72
Tangent, subspace to, Grassmannian 59
Tangent, subspace to, join 69
Tangent, subspace to, leaf of Monge — Ampere foliation 93
Tangent, subspace to, Segre variety 75
Tangent, subspace to, variety 51
Tangent, subspace to, variety with degenerate Gauss map 63 72 92 93 101 102
Tangential coordinates 23 76 80 101
Tangential coordinates of hyperplane 22 198 200
Tangential frame 23 97 145
Tangential frame, infinitesimal displacement of 23
Tangentially degenerate variety 64
Tangentially nondegenerate hypersurface 104
Tangentially nondegenerate variety 64 65 71—4 81 99
Tensor(s) 4 94
Tensor(s) of normal curvature 202 204 206
Tensor(s), curvature 19
Tensor(s), differential equations of 4
Tensor(s), field 6—7
Tensor(s), inverse 143
Tensor(s), law of transformation of 4
Tensor(s), mixed 54
Tensor(s), relative 4
Tensor(s), relative, differential equations of 4
Tensor(s), second fundamental see second fundamental tensor
Tensor(s), torsion 19
Tensorial square 45
Tevelev xvii 74 87 89 236
Theorem, Frobenius 13 17 95
Theorem, Segre 63 86 142 171
Theorem, Segre, generalized 63 86 151 171
Third-degree curve 66 ff.
Thorpe 177 218 231
Three-dimensional variety of rank two 128
Timelike hyperplane 178
Timelike hypersurface 176
Timelike line 178
Timelike subspace 187
Timelike variety 187
Tommasi xv 88 134 172 231
Torsal hypersurface 73 123
Torsal variety 135 ff.
Torse 62 66—69 74 86 102 104 117 127 128 138—140 144 168 171
Torse, edge of regression of 102 127 188
Torsion tensor of affine connection 19
Torsion-free affine connection 19
Total differential 25 30 40
Transformation(s), admissible 18 52 54
Transformation(s), affine 18 25
Transformation(s), elliptic 27
Transformation(s), Euclidean 27
Transformation(s), identity 20
Transformation(s), projective 20 88
Twisted cone 154 157
Twisted cubic 66
Twisted cylinder 118 154 163 164
Two-dimensional algebra 207
Two-parameter family of hyperplanes 76
Type of variety 87
Typical fiber 52
Unit normal vector 53
Unit tensor 94
Unity point 20
Value of exterior p-form 10
Variety 49
Variety with degenerate Gauss map 64 81 89
Variety with degenerate Gauss map of rank two 67 77 84 164 215
Variety with degenerate Gauss map without singularities 65 127 150
Variety with degenerate Gauss map, basic equations of 94 151
Variety with degenerate Gauss map, completely reducible 165 168
Variety with degenerate Gauss map, irreducible 165 167 168
Variety with degenerate Gauss map, rank of 63 64
Variety with degenerate Gauss map, rectilinear generator of 215
Variety with degenerate Gauss map, reducible 165
Variety with degenerate Gauss map, second fundamental form of 87 98 100 142 150—154 157
Variety with degenerate Gauss map, second osculating subspace of 101
Variety with net of conjugate lines 73 87
Variety, algebraic 42
Variety, complete parabolic 126 127 134
Variety, complete regular 118
Variety, cylindrical 88
Variety, differentiable almost everywhere 49
Variety, moving frame of 51
Variety, of singular points of 100
Variety, parabolic 126
Variety, parabolic, complete 126 127 134
Variety, projectively complete 96
Variety, regular complete 118
Variety, second fundamental form of 55 57
Variety, second fundamental tensor of 54 93
Variety, second osculating subspace of 56
Variety, Segre see Segre variety
Variety, strongly parabolic 88
Variety, tangentially degenerate see variety with degenerate Gauss map
Variety, tangentially nondegenerate 64 65 81 99
Variety, Veronese see Veronese variety
Реклама