Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers
Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers

Àâòîð: Rockmore D.

Àííîòàöèÿ:

For 150 years the Riemann hypothesis has been the holy grail of mathematics. Now, at a moment when mathematicians are finally moving in on a proof, Dartmouth professor Dan Rockmore tells the riveting history of the hunt for a solution.
In 1859 German professor Bernhard Riemann postulated a law capable of describing with an amazing degree of accuracy the occurrence of the prime numbers. Rockmore takes us all the way from Euclid to the mysteries of quantum chaos to show how the Riemann hypothesis lies at the very heart of some of the most cutting-edge research going on today in physics and mathematics.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2005

Êîëè÷åñòâî ñòðàíèö: 304

Äîáàâëåíà â êàòàëîã: 10.06.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Moses      93
Mosteller, Fred      224 225
Mount Holyoke      244—245
Multivalued function      147—148
Nachlass (Riemann)      140
Nahin, Paul      72
Napoleon      81—82
Nash, John, Jr.      152—153
Natal University      211
Natural logarithm      34—35
Natural numbers      7—20
Natural numbers as "God given"      7 70 111 137
Natural numbers, composites      12—13
Natural numbers, defined      7
Natural numbers, primes      see prime numbers
negative numbers      71
Neudecker, Werner      152
Nevanlinna, R.      145
New York Times      148 149
New York University      3—6 241 243 261—263
Newlands, John      108
Newman, Charlie      262 263
Newton, Isaac      38 48 50 52 82 236
Newton, Isaac, described      46—47
Nobel prize      102 150 152 155 163 171 174 257
Nobel Prize, mathematics and      141—142
Nobel, Alfred      141—142
Non-Euclidean geometry      39 123 201 203—205
Noncommutative geometry      230
Noncommutative multiplication      169n 230
Nonconstructive proof      265
Nonlinear differential equations      238
Nonorientable surface      97
Nontrivial zeta zeros      89—92
Nonzero      114n
Nuclear weapons      249—250 255
NUMBER      259
Number theorists      10
Number theory      10 53 265
Numerical methods      250
Numerosity, pattern of      8—10
Occam's razor      221
Odlyzko, Andrew      179n 198 199 218 258 263
Odlyzko, Andrew, described      180—181
Odlyzko, Andrew, Dyson — Montgomery — Odlyzko Law      180—185
On the Propagation of Heat in Solid Bodies (Fourier)      81
Operator      177
Operator theory      234
Operator, integral      178—179
Operator, zeta zeros and      180 220
Origin of Species, The (Darwin)      63
orthogonal matrices      219
Overfitting data      38 40
p-adic numbers      229—230
Pacific Institute of Mathematical Sciences      265
Painleve equations      237 238
Painleve, Paul      237—240 246
Painleve, Paul, described      238—239
Painleve: transcendants      237—240 256
Pair correlations      157—160 164
Parallel postulate      203—204
Partial differential equation      82
Patience sorting      253—254
Patterns      8—14
Patterns, figurate numbers and      10—11
Patterns, numerosity      8—10
Patterns, patterns within      11—14
Pavlovskii, V.V.      228
Peer review      148
Perfect number      12
Perfect shuffles      249
Periodic functions      83
Periodic orbit      191 192
permutations      245—259
Permutations, computer science and      247—249
Petain, Marshal      238
Philosophy      10
Physics      171
Physics, bridge between quantum mechanics and      see semiclassical limit
Physics, physicists      217
Physics, statistical      233
Pi $(\pi)$      58 70—71
Planar domains      196
Planck's constant      187—188
Planck, Max      187
Plato      13 63
Poe, Edgar Allan      24 236
Poincare conjecture      202
Poincare disk      200—209
Poincare disk, chaos in      207—209
Poincare, Henri      102
Poincare, Henri, described      202
Point      204n
Poisson process      158—160
Poisson, Simeon-Denis      158
Polya Prize      260
Polya — Hilbert approach      179—180 185 198—199 227 232
Polya, George      177—180 259—260
Polya, George, described      177—178
Polya, George, integral operators and      178—179
Polynomial      72
Polytechnical School of Delft      95—96
Pons, Jean-Louis      40
Population density      41
Poraerance, Carl      264
Poussin, Nicholas      107 119 120
Preprocessing      248
Primal curve      28—29 32
Primal waves      86—87
Primality tests      15—16 264
Prime distribution analyzer (PDA)      76—77
Prime distribution analyzer (PDA), Dirichlet's      77 81
Prime distribution analyzer (PDA), Euler s      77 81
Prime distribution analyzer (PDA), Riemannian      77—81
Prime factorization      14 20
Prime number theorem      63 91—94 95
Prime Number Theorem, Cramer primes and      138—139
Prime Number Theorem, Gauss and      42—44 69 106 119 120 126 132—133 141 185
Prime Number Theorem, Legendre and      35—38 69
Prime Number Theorem, mathematically written      36n
Prime Number Theorem, proof of      105 106—107 116 118 119 129 139
Prime Number Theorem, statement of      35
Prime numbers, algorithms for checking      264
Prime numbers, as the integral atoms      14—15
Prime numbers, asymptotic study of      23—30 51 118—119
Prime numbers, cardinality of      22—23
Prime numbers, composites and      12—13
Prime numbers, Cramer      137—139 151
Prime numbers, defined      4
Prime numbers, digital cryptography and      17—18
Prime numbers, error correction and      16—17
Prime numbers, Euclid's proof of the infinitude of      18—20 21 24 28 50 51
Prime numbers, first cartographers of      30—45
Prime numbers, Gauss and      see Gauss Carl
Prime numbers, Gaussian      112—113
Prime numbers, graphs of occurrence of      25—29
Prime numbers, harmonic series and      55—61
Prime numbers, Hawkins      151—152
Prime numbers, infinity of      18—20 21 51 59—62
Prime numbers, irregular appearance of      23—29
Prime numbers, Legendre and      see Legendre Adrie-Marie
Prime numbers, music of      81
Prime numbers, pattern within the pattern      11—14
Prime numbers, periodic tables for      59—61 107—110
Prime numbers, Riemann hypothesis and      see Riemann hypothesis
Prime numbers, search for      14—16
Prime numbers, series of reciprocals of      51
Prime numbers, shape of      21—29
Prime numbers, slowing occurrence of      41—42
Prime numbers, speaking in      16—18
Prime numbers, twin      23—24
Prime numbers, zeta zeros and      see zeta zeros
Princeton University      154 155 174 195 214 218 219 242—243
Probabilistic number theory      137
Probability theory      223
Proof (Auburn)      50
Proof of Riemann hypothesis, search for      131
Proof of Riemann hypothesis, search for, code breaking and      149—152
Proof of Riemann hypothesis, search for, Cramer and      136—139
Proof of Riemann hypothesis, search for, de la Vallee-Poussin and      107—110
Proof of Riemann hypothesis, search for, early twentieth century pursuit of      120—127
Proof of Riemann hypothesis, search for, eigenvalues and      see eigenvalues
Proof of Riemann hypothesis, search for, epilogue      263—266
Proof of Riemann hypothesis, search for, first steps in      128—153
Proof of Riemann hypothesis, search for, Hadamardand      107—110
Proof of Riemann hypothesis, search for, Hamiltonian matrix and      227—228
Proof of Riemann hypothesis, search for, limits of computation      132—134
Proof of Riemann hypothesis, search for, Millennium meeting and      3—6 261—263
Proof of Riemann hypothesis, search for, Nash and      152—153
Proof of Riemann hypothesis, search for, Siegel and      139—140
Proof of Riemann hypothesis, search for, Stieltjes and      95—99 104—105
Proof of Riemann hypothesis, search for, true, false, or neither      134—136
Proof of Riemann hypothesis, search for, two-pronged assault      129
Pseudosphere      207
Ptolemy I      13 50
Purdue University      262 265
Putnam Exam      234
Pythagoras (Pythagoreans)      10—13 54
Pythagoras (Pythagoreans), theorem of      113n 114 115
Quadratic formula      72
Quantization      196—200
Quantum chaos      187—190
Quantum chaos, basic conjecture of      197—200
Quantum chaos, Berry and      187 188—189 197—198
Quantum chaos, billiard table analogy      see billiard tables for physicists
Quantum chaos, comparison of distributions      222
Quantum chaos, making order out of      213—231
Quantum chaos, Sarnak and      217—221
Quantum chaos, zeta zeros and      199
Quantum chromodynamics (QCD)      237
Quantum electrodynamics (QED)      163 171 237
Quantum gravity      236—237
quantum mechanics      115 136—137
Quantum mechanics, classical physics and      171
Quantum mechanics, Planck's constant and      187—188
Quantum mechanics, spectral lines and      172—173
Quantum mechanics, uncertainty principle and      135 187—188
Quantum mechanics, wave function and      171—172 176—179 see
Rademacher, Hans      147—149
RAF Bomber Command      162—163
Rains, Eric      258
Random matrices      173—175 177—180 218
Random Matrices (Mehta)      218 239 244 245
Random matrices, Deift and      244—246
Random matrices, RSKand      258—259
Random matrices, Tracy — Widom distributions and      234—241
Random walk      100—104 177 178
Random Walk Down Wall Street, A (Malkiel)      102
Randomness      157—160
Randomness, understanding through      173—175
Rational integers      114
Rational numbers      70 116
Real axis      74
Real numbers      116
Real part of complex numbers      73 74
Reciprocals of logarithms      41—42
Reciprocals of Riemann's zeta function      96—99
Reeds, Jim      248
Reid, Constance      179 260n
Relative (percentage) error      126—127
Relativity theory, general      136 236—237
Relativity theory, special      202
Repulsion      160
Rescaling data      158—160
Rhind papyrus      246—247
Rhind, Henry      246
Rhodes University      242
Richter scale      33—34
Riemann hypothesis      88—94 125
Riemann hypothesis as "very likely"      91—94
Riemann hypothesis as possibly undecidable      134—136
Riemann hypothesis for function fields      145—147
Riemann hypothesis for L-series      110
Riemann hypothesis, attempts to prove      see proof of Riemann hypothesis search for
Riemann hypothesis, claimed proofs (de Branges)      262—263 265—266
Riemann hypothesis, complex numbers and      70—73
Riemann hypothesis, complex plane and      73—76
Riemann hypothesis, defined      4—5 47 88—91
Riemann hypothesis, equivalence to eigenvalue properties of matrix      179 185
Riemann hypothesis, extended      219
Riemann hypothesis, function zeta zeros and      4 5 88—91
Riemann hypothesis, generalized      120—121
Riemann hypothesis, incorrect refutation (Rademache)      147—149
Riemann hypothesis, Polya — Hilbert approach      179—180
Riemann hypothesis, publication of      63—64
Riemann hypothesis, quest to settle      4—6
Riemann hypothesis, raw material for      53
Riemann hypothesis, road to      64—69
Riemann hypothesis, web of connections to      259—260
Riemann hypothesis, zeta function and      see Ricmann's zeta
Riemann surfaces      147
Riemann — Hilbert problems      243—244
Riemann — Siegel formula      139—140 150—151
Riemann, Bernhard      4—6 63—94
Riemann, Bernhard, academic mentors of      45 59 61—62 65—69 76—78
Riemann, Bernhard, death of      65 92—93
Riemann, Bernhard, early life      65—66
Riemann, Bernhard, formulation of zeta function      80
Riemann, Bernhard, notes of      64—65
Riemann, Bernhard, reinvention of space      66—69
Riemann, Bernhard, statement of Riemann hypothesis      88—91
Riemannian geometry      66—69
Riemannian manifold      68
Riemannian prime distribution analyzer      77—81
Riemanns zeta function      5
Riemanns Zeta Function (Edwards)      140
Riemanns zeta function, "zoo" of zeta functions and      142—143 218 see search
Riemanns zeta function, creation of      76—81
Riemanns zeta function, Fourier analysis and      81—85
Riemanns zeta function, integral form of      80—81 129
Riemanns zeta function, logarithm of      81
Riemanns zeta function, music of the prime powers and      81—85
Riemanns zeta function, reciprocal of      96—99
Riemanns zeta function, Riemann hypothesis and      88—94
Riemanns zeta function, zeros of      85—92 119 125—126
Riffle shuffling      248
Rising sequence      252—259
Robinson — Schensted — Knuth (RSK) construction      257—259
Robinson, Gilbert de Beauregard      257
Rosser, John Barkely      151
Royal Danish Academy      75
Royal Society      150
Rubinstein, Michael      219
Rudnick, Zeev      218—219
Rutgers University      233
Saddle point      207
Sarnak, Peter      143 185 227 231 244 260 262
Sarnak, Peter, Cohen and      214—216
Sarnak, Peter, described      214 263
Sarnak, Peter, Katz and      219—221
Sarnak, Peter, quantum chaos and      217—221
Sarnak, Peter, Rudnick and      218—219
Sato, M.      237 239—240
Saxena, Nitin      264
Scattering theory      242—243
Schensted, Craige      257
Schmit, Charles      198
Schoenfeld, Lowell      151
Scholes, Myron      102
Schroedinger, Erwin      179
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå