Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Gierz G., Hofmann K.H., Keimel K. — Continuous Lattices and Domains
Gierz G., Hofmann K.H., Keimel K. — Continuous Lattices and Domains



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Continuous Lattices and Domains

Àâòîðû: Gierz G., Hofmann K.H., Keimel K.

Àííîòàöèÿ:

Information content and programming semantics are just two of the applications of the mathematical concepts of order, continuity and domains. This authoritative and comprehensive account of the subject will be an essential handbook for all those working in the area. An extensive index and bibliography make this an ideal sourcebook for all those working in domain theory.


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2003

Êîëè÷åñòâî ñòðàíèö: 591

Äîáàâëåíà â êàòàëîã: 04.06.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Pro-continuous functor      318 IV—5.1
Pro-continuous functor, between pro-complete categories      331 IV—6.1
Probabilistic powerdomain, is a domain      386 IV—9.17
Product, in a category      306 remarks following IV—4.1
Product, in a category of domains      79 I—2.1
Projection      11 remarks preceding O—2.5 26
Projection maps, on a product      306 Remarks following IV—4.1
Projection operator      11 remarks preceding O—2.5
Projection operator on a continuous lattice      89 I—2.17
Projection, on a continuous poset preserving directed sups      80 I—2.2
Projection, preserving (directed) sups      28 O—3.11
Projection, preserving (filtered) infs      28 O—3.11
Projective limit cone, in a category      307 IV—4.2
Projective limit preserving functor      318 IV—5.1 318
Projective limit, in a category      307 IV—4.2
Projective limit, in a category of algebraic domains      316 IV—4.11
Projective limit, in a category of bounded complete domains      317 IV—4.13
Projective limit, in a category of dcpos      308 IV—4.3
Projective limit, in a category of domains      316 IV—4.10
Projective limit, in a category of finite domains      316 IV—4.12
Projective limit, in a category of finite lattices      317 IV—4.14
Projective limit, in a category of L-domains      317 IV—4.13
Projective limit, in a category of Lawson compact domains      317 IV—4.15
Projective sequences      328 IV—5.16
Projective system, in a category      307 IV—4.2
Proper map      422 remarks preceding V—5.20 481
Property M      257 III—5.11
Pseudo-Hausdorff space      485 VI—6.31
Pseudoprime element      106 I—3.24 403
Pseudoprime element in a continuous semilattice      106 remarks following I—3.24
Pseudoprime element in a distributive continuous lattice      106 I—3.25
Quasialgebraic domain      237 III—3.23
Quasicontinuous domain      226 III—3.2
Quasicontinuous domain is a pospace      444 VI—1.15
Quasicontinuous domain is Lawson-compact      255 III—5.8
Quasicontinuous domain, closed under quotients      262 III—5.21
Quasicontinuous domain, closure properties of      239 III—3.30
Quasicontinuous domain, Scott topology is hypercontinuous      513 VII—3.9
Quasicontinuous lattice      230 III—3.8
Quasicontinuous lattice, Scott cluster points of ultrafilters      238 III—3.29
Quasicontinuous lattice, sup map characterization      263 III—5.23
Quasihomeomorphism      418 V—5.8
Quotient, of a continuous lattice      88 I—2.15
Random unit interval      92 remarks following I—2.22
Regular open sets, in a topological space      13 O—2.7(3)
Relation, auxiliary      see “Auxiliary relation”
Relation, converse      4 O—1.7
Relation, opposite      4 O—1.7
Relation, with closed graph      440 VI—1.1
Relatively compact element      50 remarks following I—1.2
retract      179 remarks preceding II—3.5
Retraction      179 remarks preceding II—3.5
Ring of sets      375 remarks following IV—9.1
Rounded ideal      242 III—4.3(ii) 249
Rounded ideal completion      250 III—4.17
Rudin’s Lemma      227 III—3.3
S-convergence      133 II—1.1
S-convergence and topological convergence      138 II—1.9
Saturated compact sets      66 I—1.24
Saturated compact sets in the spectrum      416 V—5.3
Saturated compact sets in the spectrum and Scott-open filters      417 V—5.4
Saturated subset, of a space      43 O—5.3 416
Scott closed set      134 II—1.3
Scott closed set, characterization of      135 II—1.4
Scott open set      134 II—1.3
Scott open set, characterization of      135 II—1.4
Scott open set, in a chain      136 II—1.5(2)
Scott open set, in a domain      136 II—1.6
Scott open set, in a finite lattice      136 II—1.5(1)
Scott open set, in a quasicontinuous domain      228 III—3.6
Scott open set, in the square      136 II—1.5(5)
Scott topology      132 II—1 134
Scott topology has a basis of open filters      223 III—2.13
Scott topology has enough co-primes      142 II—1.14
Scott topology is a continuous lattice      142 II—1.14 199
Scott topology is a function space      165 II—2.11
Scott topology is an algebraic lattice      143 II—1.15
Scott topology is Baire      142 II—1.13
Scott topology is completely distributive      142 II—1.14
Scott topology is finest order consistent topology      152 II—1.31(i)
Scott topology is locally compact and sober for quasicontinuous domains      229 III—3.7
Scott topology is locally compact and sober for quasicontinuous domains, (on a domain)      142 II—1.13
Scott topology is productive      197 II—4.13
Scott topology is sober      141 II—1.12 198
Scott topology, basis for (on domains)      138 II—1.10
Scott topology, co-primes in      140 II—1.11
Scott topology, forms a continuous lattice      197 II—4.13 198
Scott topology, functor, preserves injective (surjective) maps      325 IV—5.11
Scott topology, functor, preserves injective (surjective) maps, preserves projective limits      325 IV—5.11
Scott topology, induced on subsets      151 II—1.26
Scott topology, on a meet continuous lattice      198 II—4.17 199
Scott topology, on a meet continuous semilattice      206 II—4.28
Scott topology, primes in      140 II—1.11
Scott topology, when a topological lattice      199 II—4.18
Scott topology, when hypercontinuous      513 VII—3.9
Scott topology, when join continuous      198 II—4.17 199
Scott topology, when strongly sober      497 VII—1.10
Scott-continuous function      157 II—2 158
Scott-continuous function is always monotone      157 II—2.1
Scott-continuous function, between algebraic domains      157 II—2.1
Scott-continuous function, between dcpos      157 II—2.1
Scott-continuous function, characterization of      157 II—2.1
Scott-continuous function, form a dcpo      161 II—2.5
Scott-continuous function, joint continuity on products      162 II—2.8 171
Scott-continuous functionv, between domains      157 II—2.1
Second countable space      44 O—5.8
Semicontinuous function      17 O—2.10 64
Semilattice      5 O—1.8
Semilattice has small semilattices      223 III—2.12 (see also “Semilattice with small semilattice”)
Semilattice is a pospace if topological      444 VI—1.14
Semilattice is topological in the lower topology      211 III—1.4
Semilattice with small semilattices      450 VI—3.1
Semilattice with small semilattices, characterization of      451 VI—3.3
Semilattice with small semilattices, closure properties of      450 VI—3.2
Semilattice, algebraic      see “Algebraic semilattice”
Semilattice, compact      see “Compact semilattice”
Semilattice, complete      see “Complete semilattice”
Semilattice, complete continuous      see “Complete continuous semilattice”
Semilattice, continuous      see “Continuous semilattice”
Semilattice, deflationary      363 IV—8.8
Semilattice, directed complete      9 O—2.1 (see also “Directed complete semilattice”)
Semilattice, homomorphism is Lawson continuous      213 III—1.8
Semilattice, inflationary      361 IV—8.3
Semilattice, meet continuous      see “Meet continuous semilattice”
Semilattice, order connected      471 VI—5.13
Semilattice, prime element in      99 I—3.12
Semilattice, prime filter in      103 I—3.18
Semilattice, prime ideal in      103 I—3.18
Semilattice, semitopological      see “Semitopological semilattice”
Semilattice, topological      443 VI—1.11
Semilattice, when a compact pospace      517 VII—4.2
Semilattice, when a compact semilattice      518 VII—4.4
Semitopological semilattice      33 O—3.23 38 153 443
Semitopological semilattice has the Scott topology      498 VII—1.12
Semitopological semilattice is a strongly sober topological lattice      498 VII—1.12
Semitopological semilattice is semiclosed      443 VI—1.13
Semitopological semilattice, compact      see “Compact semitopological semilattice”
Semitopological semilattice, local minimum in      470 VI—5.10
Semitopological semilattice, when topology is Scott topology      496 VII—1.9(iii)
Separable space      44 O—5.8
Separated sum      73 I—1.31 321
Set, directed      1 O—1.1
Set, directed, filtered      1 O—1.1
Set, directed, lower      3 O—1.3
Set, directed, partially ordered      see “Poset”
Set, directed, preordered      1 O—1.1
Set, directed, totally ordered      see “Chain”
Set, directed, upper      3 O—1.3
Sierpinski space      136 II—1.5(3)
Sierpinski space is injective      178 II—3.3
Simple valuation      380 IV—9.9
Smash product      327 IV—5.15
Smyth powerdomain      363 IV—8.8 363
Smyth powerdomain of an algebraic domain      373 IV—8.23
Sober space      43 O—5.6 101 141
Sober space is locally compact iff $\mathcal{O}(X)$ is continuous      417 V—5.6
Sober space with completely distributive topology      425 V—5.26
Sober space, closure properties      46 O—5.16
Sober space, compact saturated sets and open filters in $\mathcal{O}(X)$      146 II—1.20
Sober space, dual to frames      426 V—5.27
Sober space, function space on      424 V—5.23(i)
Sober space, spectrum of a complete lattice      409 V—4.4
Sober space, when a domain      425 V—5.26
Sobrification, of a $T_0$-space      412 Remarks following V—4.7 414 429
Specialization order      42 O—5.2 180
Spectrum      408 V—4.1
Spectrum is a $G_{\delta}$-set and a Polish space      420 V—5.14
Spectrum of a complete lattice      408 V—4.1
Spectrum of a distributive continuous lattice      417 V—5.5
Spectrum of distributive algebraic lattices      423 V—5.21
Spectrum, compact subsets      416 V—5.1
Spectrum, is sober      409 V—4.4
Spectrum, of stably continuous frames      487 VI—7.1
Splitting lemma      386 IV—9.18
Stably compact space      476 VI—6.7 479
Stably compact space is a compact pospace      476 VI—6.8
Stably compact space is strongly sober      478 VI—6.15
Stably continuous (semi)lattice      256 III—5.9
Stably continuous frame, spectrum is stably locally compact      487 VI—7.1
Stably locally compact space      476 VI—6.7
Stably locally compact space, stable compactification      490 VI—7.7
Stochastic order      380 IV—9.7
Stochastic order for simple valuations      386 IV—9.18
Stone — Cech compactification, of a set      455 remarks following VI—3.9 460
Strict (endo)morphism      346 IV—7.2
Strict chain, in a complete lattice      293 IV—3.4
Strict chain, in a complete lattice, satisfies the interpolation property      294 remarks following IV—3.8
Strict chain, in a complete lattice, separates points in complete lattices      298 IV—3.15
Strict embedding, of a topological space      418 V—5.8 428 428
Strict function      327 IV—5.15
Strict function space      327 IV—5.15
Strong interpolation property      see “Auxiliary relation”
Strong topology      428 V—5.31
Strongly dense      428 V—5.33
Strongly sober      498 VII—1.11
Strongly sober, locally compact space is stably compact      478 VI—6.15
Strongly sober, space      477 VI—6.12 479
Subalgebra, of a continuous lattice or bounded complete domain      86 I—2.10
Subcontinua of a continuum      70 I—1.26
Subinvariant pseudometric      446 VI—2.1
Sup map, has a lower adjoint      57 I—1.10
Sup map, has a lower adjoint is a homomorphism      36 O—4.2
Sup map, has a lower adjoint is jointly continuous      198 II—4.15 204
Sup map, has a lower adjoint, on the ideals of a complete lattice      30 O—3.15
Sup map, has a lower adjoint, preserves arbitrary infs      57 I—1.10
Sup semilattice      5 O—1.8
Sup semilattice, conditional      117 I—4.5
Support of a simple valuation      380 IV—9.9
Supremum      1 O—1.1
Tarski’s fixed-point theorem      10 O—2.3
Tensor product of complete lattices      279 IV—1.27 279
Tensor product of complete lattices of continuous lattices      279 IV—1.27 279
Tensor product of complete lattices, of distributive continuous lattices      424 V—5.24
Tensor product of complete lattices, of topologies of locally compact spaces      424 V—5.24
Top, of a poset      5 O—1.8
Topological lattice      443 VI—1.11
Topological semilattice      221 III—2.7 443
Topological space, compact      43 O—5.7
Topological space, compact with $\mathcal{O}(X)$ a continuous lattice      190 II—4.4 192 193 194 196
Topological space, compact, locally compact      44 O—5.9
Topological space, compact, patch topology on      419 V—5.11
Topological space, compact, saturated subset      43 O—5.3
Topological space, compact, saturation of a subset      43 O—5.3 45
Topological space, compact, sober      43 O—5.6
Topological space, compact, weight of      243 remarks preceding III—4.5
Topologically generating subset, of a topological semilattice      400 V—2.2
Totallly ordered set      see “Chain”
Totally disconnected space      127 I—4.28(iv)
Totally order disconnected compact pospace      490 VI—7.8
Ultrafilter      45 O—5.12
Ultrafilter, cluster points, in the lower topology      235 III—3.15
Ultrafilter, cluster points, in the lower topology, in the liminf topology      232 III—3.18
Ultrafilter, in the power set of a set      104 remarks following I—3.19
Ultrafilter, in the power set of a topological space      104 I—3.21
Ultrametric, on a semilattice      458 VI—3.15
Unit interval      453 VI—3.6
Unit interval, approximate      433 V—6.2
Unit, in a semilattice      5 O—1.8
Unital semilattice      5 O—1.8
Upper adjoint      22 O—3.1
Upper adjoint is injective      26 O—3.7
Upper adjoint is surjective      26 O—3.7
Upper adjoint, preserves infs      24 O—3.3
Upper adjoint, preserving directed sups      268 IV—1.4 272
Upper adjoint, preserving primes      268 IV—1.4 277
Upper bound      1 O—1.1
Upper semicontinuous function      17 O—2.10
Upper set      3 O—1.3
Upper space      433 V—6.3
Upper topology      43 O—5.4 152
Upper topology is coarsest order consistent topology      152 II—1.31(i)
Urysohn — Carruth Metrization Theorem      445 VI—1.18
Urysohn — Nachbin Lemma      444 VI—1.16
Valuation      375 IV—9.1
Valuation, continuous      379 IV—9.5
Valuation, extension to a finitely additive measure      376 IV—9.3 377
Valuation, finite      375 IV—9.1
Valuation, powerdomain      380 IV—9.7
Valuation, powerdomain is a domain      385 IV—9.16
Valuation, simple      380 IV—9.9
Vertex, of a cone      305 IV—4.1
Vietoris topology      454 VI—3.8
Way-below relation      49 I—1 49
Way-below relation, axiom of approximation      54 I—1.6
Way-below relation, for closed lower sets of a compact semilattice      459 VI—3.22
Way-below relation, for simple valuations      388 IV—9.19
Way-below relation, for subsets      226 III—3.1
Way-below relation, fundamental properties of      50 I—1.2
Way-below relation, in a Boolean algebra      52 I—1.3(3)
Way-below relation, in a chain      51 I—1.3(1)
Way-below relation, in a complete distributive lattice      105 I—3.23
Way-below relation, in a direct product      51 I—1.3(2)
Way-below relation, in a domain      62 I—1.20
Way-below relation, in a finite poset      52 I—1.3(4)
Way-below relation, in a meet continuous lattice      53 I—1.5I—1.5(i)(3)
Way-below relation, in the domain of open filters      145 II—1.17
Way-below relation, in the lattice of open sets of a space      53 I—1.4 104 105
Way-below relation, in the lattice of two-sided ideals of a ring      52 I—1.3(5)
Way-below relation, interpolation property      56 I—1.9 62 228
Way-below relation, multiplicative      107 I—3.27 256 289
Way-below relation, on function spaces      200 II—4.20 205
Way-below relation, on the closed sets of a locally compact space      216 III—1.15(i)
Way-below relation, on the extended probabilistic power-domain      385 IV—9.16
Way-below relation, topological analogue      153 II—1.32 153
Way-below set, of an element      51 remarks following I—1.2
Way-below set, of an element is an ideal      51 remarks following I—1.2
Way-way-below relation      303 IV—3.31
Way-way-below relation, on a completely distributive lattice      303 IV—3.31
Weak irreducible      403 V—3.1
Weak prime      110 remarks following I—3.37 403 404
Weak prime, order-generate      111 I—3.38
Weight, of a domain      242 III—4.4
Weight, of a domain, of a topological space      243 remarks preceding III—4.5
Weight, of a domain, of function spaces      245 III—4.9
Well-filtered space      67 I—1.24.1
Well-filtered space and soberness      147 II—1.21
Zero, of a poset      5 O—1.8
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå