Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Gierz G., Hofmann K.H., Keimel K. — Continuous Lattices and Domains
Gierz G., Hofmann K.H., Keimel K. — Continuous Lattices and Domains



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Continuous Lattices and Domains

Àâòîðû: Gierz G., Hofmann K.H., Keimel K.

Àííîòàöèÿ:

Information content and programming semantics are just two of the applications of the mathematical concepts of order, continuity and domains. This authoritative and comprehensive account of the subject will be an essential handbook for all those working in the area. An extensive index and bibliography make this an ideal sourcebook for all those working in domain theory.


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2003

Êîëè÷åñòâî ñòðàíèö: 591

Äîáàâëåíà â êàòàëîã: 04.06.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Join-irreducible element      97 remarks following I—3.5
Joint continuity, of the sup operation      139 remarks following II—1.10
Kernel operator      26 O—3.8
Kernel operator has continuous image      270 IV—1.7
Kernel operator, lattice of continuous is algebraic      302 IV—3.26
Kernel operator, lattice of continuous is continuous      302 IV—3.26
Kernel operator, lattice of, on a complete lattice      301 IV—3.25
Kernel operator, lattice of, on a complete lattice, on a continuous lattice      302 IV—3.26
Kernel operator, lattice of, on a complete lattice, on an algebraic lattice      302 IV—3.26
Kernel operator, on a continuous lattice      88 I—2.15 89
Kernel operator, preserves infs      29 O—3.12
Kernel operator, preserving directed sups      270 IV—1.7
Koch’s Arc Theorem      470 VI—5.9
L-domain      5 O—1.8 54
L-domain of a topological ring      15 O—2.7(7)
L-domain of closed congruences, of a topological algebra      15 O—2.7(6)
L-domain of closed ideals, of a C*-algebra      63 remarks I—1.21.1 preceding 1
L-domain of closed subsets of a space      13 O—2.7(3)
L-domain of closed subspaces, of a Hilbert space      15 O—2.7(8)
L-domain of compact normal subgroups is algebraic for almost connected groups      128 I—4.29
L-domain of congruence relations, on an algebra      14 O—2.7(4)
L-domain of congruences on a continuous lattice      303 IV—3.29(i)
L-domain of filters, of a semilattice      16 O—2.8(2)
L-domain of ideals, of a lattice      14 O—2.7(4)(iii) 16
L-domain of lower sets, of a poset      16 O—2.8(1)
L-domain of monotone functions, on the unit interval      15 O—2.7(9)
L-domain of normal subgroups, of a group      14 O—2.7(4)(i)
L-domain of open sets      13 O—2.7(3)
L-domain of open sets is a continuous lattice      73 I—1.34
L-domain of open sets is algebraic      127 I—4.28(ii)
L-domain of open sets is arithmetic      127 I—4.28(iii)
L-domain of open sets, way-below relation in      53 I—1.4
L-domain of partial functions, from X to Y      73 I—1.32
L-domain of partial functions, from X to Y, on the natural numbers      15 O—2.7(10)
L-domain of regular open sets      33 O—3.22(iii)
L-domain of Scott open sets, co-primes in      140 II—1.11
L-domain of Scott open sets, co-primes in is a continuous lattice      142 II—1.14
L-domain of Scott open sets, co-primes in is completely distributive      142 II—1.14
L-domain of Scott open sets, co-primes in, on a domain      140 II—1.11
L-domain of Scott open sets, co-primes in, primes in      140 II—1.11
L-domain of subalgebras, of an algebra      14 O—2.7(5)
L-domain of subcontinua      71 I—1.26.3
L-domain of subsets      375 remarks preceding IV—9.1
L-domain of two-sided ideals, of a ring      14 O—2.7(4)(ii)
L-domain of two-sided ideals, of a ring is a continuous lattice      55 I—1.7
L-domain of two-sided ideals, of a ring, way-below relation in      52 I—1.3(5)
L-domain of upper sets, of a poset      16 O—2.8(1)
L-domain with five elements      74 I—1.36
L-domain, algebraic      see “Algebraic lattice”
L-domain, arithmetic      see “Arithmetic lattice”
L-domain, bicontinuous      see “Bicontinuous lattice”
L-domain, Boolean      see “Boolean algebra”
L-domain, characterizations of      75 I—1.38
L-domain, closure properties of      92 I—2.24
L-domain, compact      see “Compact lattice”
L-domain, complemented      12 O—2.6
L-domain, complete      9 O—2.1 (see also “Complete lattice”)
L-domain, completely distributive      see “Completely distributive lattice”
L-domain, continuous      see “Continuous lattice”
L-domain, distributive      12 O—2.6 (see also “Distributive lattice”)
L-domain, distributive algerabic      see “Distributive algebraic lattice”
L-domain, distributive arithmetic      see “Distributive arithmetic lattice”
L-domain, distributive continuous      see “Distributive continuous lattice”
L-domain, hypercontinuous      see “Hypercontinuous lattice”
L-domain, join continuous      see “Join continuous lattice”
L-domain, M-distributive      93 I—2.25
L-domain, meet continuous      see “Meet continuous lattice”
L-domain, modular      see “Modular lattice”
L-domain, Scott topology on      see “Scott topology”
L-domain, topological      443 VI—1.11
Lawson dual      283 remarks following IV—2.7
Lawson duality      398 V—1.9
Lawson duality for continuous semilattices      287 IV—2.16
Lawson duality for domains      286 IV—2.14
Lawson topology      209 III—1 211
Lawson topology and patch topology      420 V—5.15
Lawson topology has small compact semilattices      224 III—2.15
Lawson topology has small open closed semilattices      224 III—2.16
Lawson topology has small open semilattices      223 III—2.13 224
Lawson topology is compact and $T_1$ for complete (semi)lattices      214 III—1.9
Lawson topology is compact Hausdorff for complete continuous (semi)lattices      215 III—1.11
Lawson topology is compact zero-dimensional      224 III—2.16
Lawson topology is completely metrizable for countably based domains      421 V—5.17
Lawson topology is Hausdorff, for domains      215 III—1.10
Lawson topology is Hausdorff, for domains, for quasicontinuous domains      229 III—3.7
Lawson topology is separable metric      244 III—4.6
Lawson topology is the interval topology      510 VII—3.4
Lawson topology on an algebraic domain      216 III—1.14
Lawson topology, closed lower sets      212 III—1.6
Lawson topology, continuous function for      213 III—1.8
Lawson topology, open lower sets      238 III—3.28(iv)
Lawson topology, open upper sets      212 III—1.6
Lawson topology, when compact      254 III—5.5 255 258
Lawson topology, when Hausdorff      230 III—3.11
Lawson topology, when productive      221 III—2.6
Lean lattice      515 VII—3.13
Least F-algebra Morphism Lemma      348 IV—7.4
Least fixed point operator, is Scott-continuous      172 II—2.29
Least Fixed Point Theorem, for monotone self-maps      20 O—2.20
Least Fixed Point Theorem, for monotone self-maps, for Scott-continuous self-maps      160 II—2.4
Least upper bound      1 O—1.1
Lens in a domain      368 IV—8.15
Lifting functor      321 IV—5.6
Liminf convergence      232 III—3.13
Liminf convergence is topological      234 III—3.17
Liminf topology      226 III—3 232
Liminf topology, agrees with the Lawson topology      234 III—3.17
Liminf topology, closed lower sets      232 III—3.14
Liminf topology, closed sets      232 III—3.15
Liminf topology, open upper sets      232 III—3.14
Liminf topology, when compact      233 III—3.16
Liminf, of a net      133 II—1.1
Limit cone, over a diagram      305 IV—4.1
Limit maps      306 IV—4.1
Limit preserving functor      318 IV—5.1
Limit, of a diagram      306 IV—4.1
Limit-colimit coincidence      309 IV—4.5 313
Linked bicontinuous lattice      501 VII—2.5
Linked bicontinuous lattice is a compact lattice in Lawson topology      502 VII—2.8
Linked bicontinuous lattice is completely distributive, if distributive      503 VII—2.10
Linked bicontinuous lattice is embeddable in a cube      503 VII—2.10
Linked bicontinuous lattice, Lawson topology has small lattices      502 VII—2.8
Local minimum in a pospace      469 VI—5.8
Locally compact sober space, duality with distributive continuous lattices      423 V—5.20 426
Locally compact space      44 O—5.9 53
Locally compact space, co-compact topology      427 V—5.29
Locally compact space, lower topology on the lattice of closed sets      216 III—1.15(iii)
Locally compact space, open sets form a continuous lattice      55 I—1.7
Locally compact space, Scott topology on the lattice of closed sets      216 III—1.15(ii)
Locally continuous functor      320 IV—5.3
Locally continuous functor, contravariant case      323 IV—5.7
Locally continuous functor, preserves adjoints and projective limits      320 IV—5.5
Locally order preserving functor      320 IV—5.3
Locally order preserving functor, contravariant case      323 IV—5.7
Locally order preserving functor, preserves adjoints      320 IV—5.4
Locally strongly sober space      477 VI—6.12
Locally strongly sober space is coherent      478 VI—6.14
Lower adjoint      22 O—3.1
Lower adjoint is a lattice homomorphism      277 IV—1.22
Lower adjoint is injective      26 O—3.7
Lower adjoint is Scott-continuous      159 II—2.3(1)
Lower adjoint is surjective      26 O—3.7
Lower adjoint, preserves sups      24 O—3.3
Lower adjoint, preserving compact elements      271 IV—1.11 272
Lower adjoint, preserving Scott open sets      268 IV—1.4
Lower adjoint, preserving the way-below relation      268 IV—1.4 271
Lower bound      1 O—1.1
Lower limit, of a net      133 II—1.1
Lower semicontinuous function      17 O—2.10 132
Lower semicontinuous function is Scott-continuous      159 II—2.3(3)
Lower semicontinuous function, form a continuous lattice      64 I—1.22
Lower set      3 O—1.3
Lower topology      43 O—5.4 210
Lower topology is productive      211 III—1.3
Lower topology, continuous function for      210 III—1.2
Lower topology, open sets      238 III—3.28(i)
Meet      1 O—1.1
Meet continuous (semi)lattice      56 I—1.8
Meet continuous (semi)lattice, auxiliary relations on      59 I—1.14
Meet continuous (semi)lattice, is compact Hausdorff      224 III—2.15
Meet continuous (semi)lattice, is Hausdorff      222 III—2.9
Meet continuous (semi)lattice, is semitopological      221 III—2.8
Meet continuous (semi)lattice, is zero dimensional      224 III—2.16
Meet continuous (semi)lattice, Lawson topology has small semilattices      223 III—2.13 224
Meet continuous (semi)lattice, open filters are a basis for the Scott topology      223 III—2.13
Meet continuous (semi)lattice, order compatible topologies      154 II—1.34
Meet continuous (semi)lattice, Scott topology is a dual frame      206 II—4.28
Meet continuous (semi)lattice, way-below relation in      53 I—1.5(i)(3) 60
Meet continuous (semi)lattice, when a continuous (semi)lattice      60 I—1.16 224
Meet continuous (semi)lattice, when an algebraic (semi)lattice      224 III—2.16
Meet continuous (semi)lattice, with algebraic Scott topology      224 III—2.16
Meet continuous (semi)lattice, with continuous Scott topology      221 III—2.8 222 224
Meet continuous dcpo      219 III—2.1
Meet continuous dcpo, closed lower sets      221 III—2.5
Meet continuous dcpo, open upper sets      221 III—2.5
Meet continuous dcpo, when a domain      222 III—2.11
Meet continuous semilattice      36 O—4.1
Meet-continuous lattice      36 O—4.1
Meet-continuous lattice is a topological lattice in the Scott topology      498 VII—1.11
Meet-continuous lattice, closure properties of      40 O—4.8
Meet-continuous lattice, Scott topology on      198 II—4.17 199
Meet-continuous lattice, when a compact pospace      518 VII—4.4
Meet-continuous lattice, when a continuous lattice      74 I—1.35
Meet-continuous lattice, when locally strongly sober      497 VII—1.10
Meet-continuous lattice, when Scott topology is productive      498 VII—1.11
Meet-continuous lattice, with continuous Scott topology      199 II—4.18 518
Meet-continuous lattice, with join continuous Scott topology      198 II—4.17 199
Meet-irreducible element      see “Irreducible element”
Minimal upper bound      253 III—5.3
Modular lattice      108 I—3.29
Modular law, for valuations      375 IV—9.1
Monogeneric subset      186 II—3.18
Monotone convergence space      183 II—3.12
Monotone convergence space, is a domain      184 II—3.16
Monotone function      5 O—1.9
Monotone net      2 O—1.2
Monotone normal pospace is embeddable in a cube      444 VI—1.16
mub-complete      253 III—5.3
Net      2 O—1.2
Net, antitone      2 O—1.2
Net, directed      2 O—1.2
Net, filtered      2 O—1.2
Net, lower limit of      133 II—1.1
Net, monotone      2 O—1.2
O-regular topology, for a poset      494 VII—1.6
Open filter, form a continuous semilattice (on a continuous semilattice)      145 II—1.17
Open filter, form a continuous semilattice (on a continuous semilattice), form a domain (on a domain)      145 II—1.17
Open filter, form a continuous semilattice (on a continuous semilattice), on a dcpo      95 I—3.1
Open filter, form a continuous semilattice (on a continuous semilattice), on a domain      96 I—3.3
Open function      269 Remarks preceding VI—1.6
Open upper set, in a dcpo      95 I—3.1
Open upper set, in a dcpo, maximal element in the complement      96 I—3.4
Operator, closure      see “Closure operator”
Operator, closure, kernel      see “Kernel operator”
Opposite relation      4 O—1.7
Order connected      471 VI—5.13
Order consistent topology      152 II—1.30 152 186
Order consistent topology on a poset      485 VI—6.30
Order convergence, of a net      217 remarks preceding III—1.17
Order preserving function      5 O—1.9
Order regular topology, for a poset      494 VII—1.6
Order topology      217 remarks preceding III—1.22 217
Order, auxiliary      see “Auxiliary relation”
Order-compatible topology      154 II—1.34
Order-generating set, in a poset      97 I—3.8 97
Partial function      15 O—2.7(10)
Partial order, closed      440 VI—1.1
Partial order, closed, lower semiclosed      440 VI—1.1
Partial order, closed, semiclosed      253 III—5.1 440
Partial order, closed, upper semiclosed      440 VI—1.1
Partial order, closed, with closed graph      440 VI—1.1
Partially ordered set      4 O—1.6 (see also “4 Poset”)
Patch topology      44 O—5.10 419
Patch topology is functorial      489 VI—7.6
Patch topology on a compact coherent space      475 VI—6.5
Patch topology, on a domain      482 VI—6.24
Patch topology, on the primes is compact      420 V—5.13
Patch topology, on the primes is compact, is the Lawson topology      419 V—5.12
Plotkin powerdomain      364 IV—8.11 367 368
Plotkin powerdomain and the domain of lenses      370 IV—8.18
Plotkin powerdomain of an algebraic domain      373 IV—8.24
Point valuation      380 IV—9.9
Pointed dcpo      9 O—2.1
Polish space      45 O—5.13
Polish space, domain environment      434 V—6.6
POSET      4 O—1.6
Poset has an order consistent topology      494 VII—1.7
Poset, $\omega$-point in      494 VII—1.6
Poset, algebraic      see “Algebraic poset”
Poset, as a category      23 remarks following O—3.1
Poset, bounded complete      9 O—2.1
Poset, continuous      see “Continuous poset”
Poset, directed complete      9 O—2.1
Poset, o-regular topology for      494 VII—1.6
Poset, order convex hull of a subset      441 VI—1.5
Poset, order convex subset of      441 VI—1.5
Poset, order regular topology for      494 VII—1.6
Poset, radially convex metric for      445 VI—1.17
Poset, when each point is sup of $\omega$-points      494 VII—1.7(iii)
Poset, with compatible topology      440 VI—1.2
Pospace      440 VI—1.1
Pospace is Hausdorff      441 VI—1.4
Pospace is locally order convex if compact      442 VI—1.9
Pospace is monotone normal if compact      442 VI—1.8
Pospace is semiclosed      440 remarks following VI—1.1
Pospace, arc chain in      469 VI—5.5
Pospace, compact      see “Compact pospace”
Pospace, local minimum in      469 VI—5.8
Pospace, locally order convex      441 VI—1.5
Pospace, monotone normal      442 VI—1.7
Pospace, open upper sets, form, an o-regular topology      494 VII—1.7
Pospace, open upper sets, form, an o-regular topology, form, an order consistent topology      494 VII—1.7
Pospace, radially convex metric for      445 VI—1.17
Powerdomains      359 IV—8
Powerdomains, extended probabilistic      380 IV—9.7
Powerdomains, extended probabilistic, universal property      390 IV—9.24
Powerdomains, probabilistic      380 IV—9.7
Powerset of a set      13 O—2.7(1)
Powerset of a set, is an algebraic lattice      120 I—4.15(1)
Preorder      1 O—1.1
Preordered set      1 O—1.1
Priestley duality, for distributive arithmetic lattices      491 VI—7.10
Prime element      98 I—3.11 99
Prime element in a completely distributive lattice      398 V—1.7
Prime element is compactly prime      397 V—1.5
Prime element, in $\mathcal{O}(X)$      100 I—3.14
Prime element, in $\mathcal{Q}(X)$      100 I—3.14
Prime element, order generate a continuous semilattice      99 I—3.13
Prime element, The Lemma      396 V—1.1
Prime filter      103 I—3.18
Prime filter in a power set      104 I—3.19
Prime ideal      103 I—3.18
Prime ideal in a distributive lattice      104 I—3.20
Prime ideal in a poset or semilattice      103 I—3.17
Prime ideal in C(X), closed, for X compact Hausdorff      399 V—1.12
Principal filter      3 O—1.3
Principal filter embedding, on a poset      16 O—2.8(4)
Principal ideal      3 O—1.3
Principal ideal embedding, on a poset      16 O—2.8(4)
Pro-complete category      331 IV—6.1
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå