Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Hovey M. — Model Categories, Vol. 63
Hovey M. — Model Categories, Vol. 63



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Model Categories, Vol. 63

Автор: Hovey M.

Аннотация:

[The book] starts with an account of the definitions, and a development of the homotopy theory of model categories. This is probably the first time in which the important notion of cofibrant generation has appeared in a book, and the consideration of the 2-category of model categories and Quillen adjunctions is another interesting feature. — Bulletin of the London Mathematical Society Model categories are used as a tool for inverting certain maps in a category in a controllable manner. As such, they are useful in diverse areas of mathematics. The list of such areas is continually growing. This book is a comprehensive study of the relationship between a model category and its homotopy category. The author develops the theory of model categories, giving a careful development of the main examples. One highlight of the theory is a proof that the homotopy category of any model category is naturally a closed module over the homotopy category of simplicial sets. Little is required of the reader beyond some category theory and set theory, which makes the book accessible to advanced graduate students. The book begins with the basic theory of model categories and proceeds to a careful exposition of the main examples, using the theory of cofibrantly generated model categories. It then develops the general theory more fully, showing in particular that the homotopy category of any model category is a module over the homotopy category of simplicial sets, in an appropriate sense. This leads to a simplification and generalization of the loop and suspension functors in the homotopy category of a pointed model category. The book concludes with a discussion of the stable case, where the homotopy categoryis triangulated in a strong sense and has a set of small weak generators.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1998

Количество страниц: 207

Добавлена в каталог: 27.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Stable homotopy category, algebraic, without duality      184
Stable homotopy category, ordinary      194
Steenrod algebra      60
Strongly dualizable      184
superclass      22
Suspension functor      148 149—183 185—187
Symmetric C-algebra      105
Symmetric C-algebra functor      105
Symmetric monoidal C-model category      118
Symmetric monoidal category      103
Symmetric monoidal functor      103
Symmetric monoidal model category      109 192—193
Symmetric monoidal structure      103
Symmetric spectra      176 192 194
t      see also topological spaces compactly
Tame module      61
Tate resolution      71
Top      see also topological spaces
Top$_*$      see also topological spaces pointed
Topological spaces      27 48—60 77—81 102 106 110 188 191—192
Topological spaces, compactly generated      58 106 111 114
Topological spaces, compactly generated, pointed      111 114
Topological spaces, Hurewicz model category of      34
Topological spaces, pointed      57 171
Topology, k-space      58
Total derived natural transformation      see also natural transformation total
Total left derived functor      see also derived functor total
Total right derived functor      see also derived functor total
Transfinite composition      28
triangle      177 178
Triangle, left      169 170
Triangle, right      169 170
Triangulated category      172 175 176 177—184 194
Triangulated category, classical      175 178 180—181
Triangulated category, closed monoidal      176
Triangulated category, closed symmetric monoidal      182
Triangulation, classical      177
Triple      193
Trivial cofibration      see also cofibration trivial
Trivial fibration      see also fibration trivial
Two out of three property of Quillen equivalences      21
Two out of three property of weak equivalences      3
Verdier, J.-L.      175
Verdier’s octahedral axiom      see also octahedral axiom
Vertical composition in a 2-category      23
Vertical composition of natural transformations      23
Voevodsky, Vladimir      192
Weak equivalence      3
Weak generators      175 183 185—187
Weak Hausdorff      57
| - |      see also geometric realization
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте