Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Street R., Murray M. (Ed), Broadbridge Ph. (Ed) — Quantum Groups: A Path to Current Algebra
Street R., Murray M. (Ed), Broadbridge Ph. (Ed) — Quantum Groups: A Path to Current Algebra



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Quantum Groups: A Path to Current Algebra

Авторы: Street R., Murray M. (Ed), Broadbridge Ph. (Ed)

Аннотация:

Algebra has moved well beyond the topics discussed in standard undergraduate texts on 'modern algebra'. Those books typically dealt with algebraic structures such as groups, rings and fields: still very important concepts! However Quantum Groups: A Path to Current Algebra is written for the reader at ease with at least one such structure and keen to learn the latest algebraic concepts and techniques. A key to understanding these new developments is categorical duality. A quantum group is a vector space with structure. Part of the structure is standard: a multiplication making it an 'algebra'. Another part is not in those standard books at all: a comultiplication, which is dual to multiplication in the precise sense of category theory, making it a 'coalgebra'. While coalgebras, bialgebras and Hopf algebras have been around for half a century, the term 'quantum group', along with revolutionary new examples, was launched by Drinfel'd in 1986.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 260

Добавлена в каталог: 23.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Linearly independent      14
Mac Lane, coherence theorem      68 109
Mac Lane, Saundcrs      109 113
Manin, Yuri I.      10 64 65
McCrudden, Paddy      xvi
Module, Cauchy      21
Module, finitely generated      13
Module, from R to S      16
Module, left R-module      13
Module, morphism      14
Module, projective      21
Module, right R-modute      13
Monoid      2 7 97
Monoid, affine over k      7
Monoid, arrow      97
Monoid, category      100
Monoid, commutative      3
Monoid, diagrammatic definition      7
Monoid, homomorphism      3
Monoid, morphism      3
Monoid, morphisms preserve invertibility      4
Monoid, quasi-Hopf      105
Monoid, R-atgebra      29
Monoidal category, tensor category      67
Monoidal functor, tensor functor      85
Moore, Ross, LATEX2HTML      xvii
Moore, Ross, XY-pic      xvi
Morita Theory      62
Morita Theory, fundamental theorem      22
Morphism of bialgebras      44
Morphism of C*-algebras      5
Morphism of coalgebras      38
Morphism of k-algebras      4 6
Morphism of Lie algebras      33
Morphism of monoids      3
Morphism of R-algebras      27
Morphism of rigs      4
Morphism, algebra      5
Morphism, comodule      62
Morphism, composable      xii
Morphism, composite      xii
Morphism, evaluation      19
Morphism, identity      xii
Morphism, invertible      xiii
Morphism, left inverse      xiii
Morphism, map of varieties      6
Morphism, module morphism      14
Morphism, retraction      21
Morphism, right inverse      xiii
Morphisms      xi
Multilinear function      17
Multiplication, opposite      13
Multiplication, scalar      13
Multiplicative matrices      64
Natural famity      68
Natural isomorphism      xiv
Natural numbers      4
Natural numbers, example of a rig      4
Natural transformation      xiv 102
Naturality      xiv
Non-com mutating indeterminates      9
Object of category      6
Object, coterminal      xiii
Object, initial      xiii
Object, representing      xiv
Object, terminal      xiii 7
Object, unit,      67
Objects      xi
Opposite algebra      30
Opposite category      xii
Opposite multiplication      13
Opposite, dual      xii
Pasted composite      100
Pasting      99
Pasting, 2-cells      97
Planck constant      9
Poincare — Birkhoff — Witt      35
Point      5 6
Point as algebra morphism      5
Point of a k-algebra      6
Point, B-point      6
Point, B-point of a k-algebra      6
Primitive element in a coalgebra      41
Product in category X      6
Product of modules      24
Product of objects      xii
Product, tensor      67
Product, tensor product      7
Projection      xii 24
Projection, universal property      xii
Projective      21
Projective plane      xi
Projective plane, axioms      xi
Projective plane, incidence      xi
Projective plane, reverse $\mathcal{P}^{rev}$      xi
QIST      10
Quadratic algebra      80
Quadratic algebra, category QA      80
Quadratic algebra, morphism      80
Quantization      9
Quantization, deforming commutative algebras to non-commutative ones      9
Quantum deformation      57
Quantum determinant      57
Quantum group      108 115
Quantum group over R      108
Quantum group, cotortile bimonoid in $Mod_R$      108
Quantum inverse scattering transform      10
Quantum matrices      9
Quantum plane      10 80
Quantum spaces      9
Quantum spaces, correspond to k-algebras      9
Quantum special linear group      12
Quantum superplane      10 81
Quantum, Cramer Rule      120
Quantum, general linear group      12 57
Quasi-bimonoid      104
Quasi-bimonoid in V      104
Quasitriangular bialgebra      72
R-algebra      27
R-algebra, commutative      30
R-algebra, group      29
R-algebra, monoid      29
R-algebra, skew commutative      31
R-algebra, symmetric      30
R-coalgebra      117
R-Lie algebra      32
R-module, derivation      32
R-module, two-sided      29
Representable functor      xiv
Representation      29
Representation of group on monoid      29
Representation, appropriate      109
Representing object      xiv
Restriction of scalars      59 101
retract      21
Retraction morphism      21
Reverse-arrow universal property      63
Ribbons tangles      84
Ribbons YB-operator      88
Rig      4
Rig, commutative      4
Rig, morphism      4
Rig, natural numbers      4
Right inverse      xiii
Ring      4
Ring with opposite multiplication      13
Rivano      see Saavedra Rivano
Saavedra Rivano, Neantro      109
Sabadini, Nicoletta      117
Scalar multiplication      4
Self-adjoint      54
Set-like element in a coalgebra      40
Shum Mei Chee      84 91
Signed seta      83
Skew commutative      31
Small sets      86
Source of a tangle      83
Space seen from the other side of your brain      5
span      13
Strict      104
Strong monoidal functor tensor functor      85
Submodule      14
Submodule, generated by a subset      15
Supergeometry      10
Sweedler, Moss E.      115
switch      3 70
Symmetric R- algebra      30
Symmetric tensor category      69 79
Symmetry for a tensor category      68
TaEent, Ross      xvi
Taking off your belt      91
Tangle      83
Tangle, autonomous braided category      83
Tangle, geometric      82
Tangle, source      83
Tangle, tangles on ribbons      84
Tangle, tangles on strings      82
Tangle, target      82
Tannaka duality      115 117
Tannaka duality theorem      109
Target of a tangle      82 83
Target, codomain      xii
Tensor algebra      28
Tensor category      67 104
Tensor category, autonomous      84
Tensor category, balanced      73
Tensor category, braided      68
Tensor category, closed      78
Tensor category, free autonomous      117
Tensor category, left autonomous      117
Tensor category, opposite      68
Tensor category, strict      68 70 104
Tensor category, symmetric      69
Tensor functor      85
Tensor functor takes YB-operator into YB-operator      89
Tensor functor, balanced      86 114;
Tensor functor, braided      85; 114
Tensor functor, closed      86
Tensor functor, left-closed      86
Tensor functor, monoidal functor      85
Tensor functor, preserves dualizability      90
Tensor functor, preserves duals      86
Tensor functor, preserves products      87
Tensor functor, right-closed      86
Tensor functor, strict      85
Tensor functor, strong monoidal functor      85
Tensor functor, symmetric      86
Tensor functor, weak      85
Tensor object      104
Tensor product      67
Tensor product as composition of modules      16
Tensor product of braids      69
Tensor product of R-modules      29
Tensor product, multiple      16
Tensor product, represent bilinear function as module morphism      18
Tensor-horn      61
Terminal object      xiii 7
Tortile      82 84
Twist      73 84
Twist element      75
Two-sided R-module      29
Ulbrich, Karl-Heinz      114
UNIT      81
Unit, left      67
Unit, object      67
Unit, right      67
Universal algebra      87
Universal enveloping algebra      33 40 46 87
Universal enveloping algebra is a cocommutative bialgebra      45
Universal property      x
Universal property for internal horn      78
Universal property, end      110
Universal property, internal horn      110
Universal property, reverse-arrow      63
Universal, property      115
Up to coherent isomorphism      87
Vaughan, Elaine      xvi
Vector space over R      13
Verity, Dominic R.      117
Walsh, Grahame      xvii see
Walters, Robert F.G.      117
Weak, tensor functor takes monoids to monords      101
Weak, tensor functor, essentially      103
Whisker      98—100
Williams, Sam      xvi
XY-pic, Kristoffer Rose      xvi
XY-pic, Ross Moore      xvi
Yang — Baxter      87
Yang — Baxter hexagon      87
Yang — Baxter, YB-operator      87 93
YB-hexagon      87 93
YB-operator under tensor functors      89
YB-operator, balanced      88 89
YB-operator, compatability with duals      89
YB-operator, dualizable      89
YB-operator, given by braiding      89
YB-operator, in braided tensor category      89
YB-operator, left-dualizable      89
YB-operator, tortile      90 91 96
Yetter, David      82
Yoneda Lemma      xiv
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте