Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Husemoller D. — Fibre Bundles
Husemoller D. — Fibre Bundles



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Fibre Bundles

Автор: Husemoller D.

Аннотация:

Fibre bundles play an important role in just about every aspect of modern geometry and topology. Basic properties, homotopy classification, and characteristic classes of fibre bundles have become an essential part of graduate mathematical education for students in geometry and mathematical physics. In this third edition two new chapters on the gauge group of a bundle and on the differential forms representing characteristic classes of complex vector bundles on manifolds have been added. These chapters result from the important role of the gauge group in mathematical physics and the continual usefulness of characteristic classes defined with connections on vector bundles.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 3rd Edition

Год издания: 1993

Количество страниц: 380

Добавлена в каталог: 22.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Semiring, ring completion      115 116
Special orthogonal group      see “Orthogonal group”
Special unitary group      see “Unitary group”
Sphere bundles      253—255
Sphere(s), normal bundle to      13
Sphere(s), tangent bundle of      13 17 98—100 251
Spin group (Spin(n))      169 170
Spin group (Spin(n)), maximal tori      196 197
Spin group (Spin(n)), real representations of      203—205
Spin group (Spin(n)), representation ring of      200—203
Spin group (Spin(n)), Weyl group of      196 197
Spin representations, complex      198—200 206—208
Spin representations, complex, and $J(RP^n)$      234—239
Spin representations, complex, real      206—208
Splitting maps      251
Stability of classical groups      94
Stable equivalence (s-equivalence)      111 118—120
Stiefel variety      13 91 92
Stiefel variety, as homogeneous space      87—89
Stiefel variety, homotopy groups of      91—93 95
Stiefel — Whitney classes, axiomatic properties of      247
Stiefel — Whitney classes, definition      247
Stiefel — Whitney classes, definition, by Steenrod squares      257
Stiefel — Whitney classes, dual      278
Stiefel — Whitney classes, multiplicative property of      252 253
Stiefel — Whitney classes, of a manifold      275
Stiefel — Whitney classes, relation of, to orientability      278
Stiefel — Whitney numbers      276
Subbundle      11
Subspace, trivialization over      122
Suspension      5 314
Suspension, decomposition      319—321
Suspension, double      318 333—337
Suspension, fibre bundles over      97
Suspension, sequences      322—323
Symmetric bilinear form      154
Symmetric functions      189—191 285 286
Symplectic group (Sp(n))      40 87
Symplectic group (Sp(n)) examples      90
Symplectic group (Sp(n)) homotopy groups of      94 104—107
Symplectic group (Sp(n)) infinite      88
Symplectic group (Sp(n)) maximal tori of      193
Symplectic group (Sp(n)) representation ring of      195
Symplectic group (Sp(n)) Weyl group of      193
Tangent bundle, of manifold      263
Tangent bundle, of projective space      14 17 251
Tangent bundle, of sphere      13 17 98—100 251
Thorn isomorphism      258
Thorn space(s)      217—219 258
Thorn space(s), Euler class and      255 258
Thorn space(s), fibre homotopy type and      227
Topological group      40
Topology, compact-open      4
Torus (tori), maximal      see “Maximal tori”
Torus (tori), maximal, representation ring of a      185 186
Total space      11
Transformation group      40
Transition functions      62 63
Trivialization over a subspace      122
Unitary group U(n) and SU(n)      40 87
Unitary group U(n) and SU(n), examples      90
Unitary group U(n) and SU(n), homotopy groups of      94 104—107
Unitary group U(n) and SU(n), infinite      88
Unitary group U(n) and SU(n), maximal tori of      191
Unitary group U(n) and SU(n), representation ring      192
Unitary group U(n) and SU(n), Weyl group of      191
Universal bundle      54 55
Universal bundle, for classical groups      95
Universal bundle, Milnor's construction of      54—56
Universal bundle, Milnor's construction of, verification of universal property      56—58
Universal bundle, of vector bundles      35 96
Vector bundle(s)      24
Vector bundle(s), atlas of charts for      24 62 63
Vector bundle(s), classification      34 35 96
Vector bundle(s), Euler characteristic of stable      136—137
Vector bundle(s), finite type      32
Vector bundle(s), homotopy classification of      28—35 113
Vector bundle(s), induced      27 28
Vector bundle(s), isomorphism of      26
Vector bundle(s), metrics (riemannian and hermitian)      37—38
Vector bundle(s), morphism of      26
Vector bundle(s), orientation of      244 285 286
Vector bundle(s), representations and      177 178
Vector bundle(s), universal bundle of      34 35 97
Vector bundle(s), Whitney sum of      27
Vector fields, and Euler characteristic      274 275
Vector fields, and Euler characteristic, on spheres      24 151 152 168 239
Vector fields, and Euler characteristic, on spheres and $J(RP^k)$      233—235
Vector fields, and Euler characteristic, on spheres and coreducibility      232—233
Vector fields, and Euler characteristic, reducibility      230—232
Weil, Andre      280
Weyl group, of compact group      184
Weyl group, of compact group, of SO(n)      195 196
Weyl group, of compact group, of Sp(n)      193
Weyl group, of compact group, of Spin(n)      196 197
Weyl group, of compact group, of SU(n)      178 191
Weyl group, of compact group, of U(n)      178 191
Whitney sum of vector bundles      27
Wu's formula      275
Yoneda representation theorem      294 295
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте