Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Petersen P. — Riemannian Geometry
Petersen P. — Riemannian Geometry



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Riemannian Geometry

Автор: Petersen P.

Аннотация:

Intended for a one year course, this volume serves as a single source, introducing students to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory, while also presenting the most up-to-date research. This book will appeal to readers with a knowledge of standard manifold theory, including such topics as tensors and Stokes theorem. Various exercises are scattered throughout the text, helping motivate readers to deepen their understanding of the subject.

Important additions to this new edition include: A completely new coordinate free formula that is easily remembered, and is, in fact, the Koszul formula in disguise; An increased number of coordinate calculations of connection and curvature; General fomulas for curvature on Lie Groups and submersions; Variational calculus has been integrated into the text, which allows for an early treatment of the Sphere theorem using a forgottten proof by Berger; Several recent results about manifolds with positive curvature.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 2006

Количество страниц: 404

Добавлена в каталог: 22.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Riemannian embedding      3
Riemannian immersion      3
Riemannian immersion in Euclidean space      97
Riemannian isometry      2
Riemannian isometry, uniqueness of      144
Riemannian manifold      2
Riemannian submersion      4 82 148 151
Scaling      62
Schur's lemma      39
Schwarzschild metric      72
Second covariant derivative      29
Second fundamental form      see also Shape operator
Segment      123 133
Segment characterization      139
Segment domain      139
Semi-Riemannian manifold      4
Shape operator      43
Shape operator for hypersurface in Euclidean space      96
Soul theorem      349
Sphere      3
Sphere as doubly warped product      15
Sphere as rotationally symmetric metric      14
Sphere as surface of revolution      11
Sphere theorem, Berger      180
Sphere, computation of curvatures      64
Sphere, geodesics on      120
Sphere, Grove — Shiohama      347
Sphere, isometry group of      5
Sphere, Rauch — Berger — Klingenberg      181 346
Spin manifolds      213
Splitting theorem      283
SU (2)      see also Berger spheres
Subharmonic function      280
Submetry      148
Superharmonic function      280
Surface of revolution      10 98
Surface, rotationally symmetric      11
Symmetric space      236 239
Symmetric space, computation of curvatures      242
Symmetric space, existence of isometries      238
Symmetry rank      195
Synge's lemma      172
Tangential curvature equation      44
Tangential curvature equation in Euclidean space      97
Topology, manifold      123
Topology, metric      123
Toponogov comparison theorem      339
Torus      7 17
Totally geodesic      145
triangle      338
Type change      51
Variational field      127
Variations      127
Variations, First Variation Formula      127
Variations, Second Variation Formula      158
Volume comparison for cones      291
Volume comparison, absolute      269
Volume comparison, relative      269 291
Volume form      57 266
Weak second derivatives      279
Weitzenboeck formula      211
Weitzenboeck formula for forms      217
Weyl tensor      92
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте