Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Hirschfield J.W. — Projective Geometries over Finite Fields
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Projective Geometries over Finite Fields
Àâòîð: Hirschfield J.W.
Àííîòàöèÿ: This book is an account of the combinatorics of projective spaces over a finite field, with special emphasis on one and two dimensions. With its successor volumes, Finite projective spaces over three dimensions (1985), which is devoted to three dimensions, and General Galois geometries
(1991), on a general dimension, it provides the only comprehensive treatise on this area of mathematics. The area is interesting in itself, but is important for its applications to coding theory and statistics, and its use of group theory, algebraic geometry, and number theory. This new edition is
a complete reworking, containing extensive revisions, particularly in the chapters on generalities, the geometry of arcs in ovals, the geometry of arcs of higher degree, and blocking sets. Part I gives a survey of finite fields and an outline of the fundamental properties of projective spaces and
their automorphisms; it includes the properties of algebraic varieties and curves used throughout the book and in the companion volumes. Part II covers, in an arbitrary dimension, the properties of subspaces, of partitions into both subspaces and subgeometries, and of quadrics and Hermitian
varieties, as well as polarities. Part III is a detailed account of the line and plane; with little reference to the generalities from Parts I and II, the author revisits fundamental properties of the plane and then describes the structure of arcs and their relation to curves. This part includes
chapters on blocking sets and on small planes (those with orders up to thirteen). With a comprehensive bibliography containing over 3,000 items, this volume will prove invaluable to researchers in finite geometry, coding theory and combinatorics. — This text refers to the
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1980
Êîëè÷åñòâî ñòðàíèö: 488
Äîáàâëåíà â êàòàëîã: 22.05.2008
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Nucleus of a cubic curve 241 250—252
Nucleus of a quadric 114
Null polarity 34—36
Null polarity on a line 124
Null polarity, canonical form for a 111—112
Orbits of a projectivity 152—156
Order of a linear transformation 48—49
Order of a primal 49
Order of a projectivity 48—49
Order of a semi-linear group 420—421
Order of a variety 51
Ordinary polarity 34 36
Ordinary singularity 222
Oval 70 163—186 232—239 413—418
Oval, regular 174 182 209—211
Oval, translation 182—186
Ovaloid 70
Pappus's Theorem 159—161
Parabolic Quadric 106—111 114—115
Parallel class 38
Parallel lines 38 332—335
Pascal hexagon 394
Pascal line 394 397
Pencil 53
Pencil, full syzygetic 276
Pencil, syzygetic 271
Pentad, harmonic 407
Pentad, non-harmonic 407
Pentastigm 55
Pentastigm, diagonal points of a 139—140
Perfect difference set 78—79 96
Permutation group 244
Perspectivity 157—161
PG(2,11) 219
PG(2,13) 211—212
PG(2,16) 179
PG(2,2) 208 214 219 221 312—313 387—389
PG(2,3) 208 214 219 312—313 377—378 390—392
PG(2,4) 208 214 219 243 312—313 355 378—381 392—397
PG(2,5) 208 214 219 312—313 356 381 397—398
PG(2,7) 208—209 219 312—313 356—357 381—383
PG(2,8) 208—211 219 221 235 383—384 401—406
PG(2,9) 208 219 406—414
PG(3,2) 82—85
Plane 29
Plane curve 221—232
Plane curve, absolutely irreducible 221
Plane curve, component of a 221
Plane curve, degree of a 221
Plane curve, irreducible 221
Plane curve, order of a 221
Point 29 37
Point of a variety 49
Point of inflexion 222
Point, associated 128 132—133
Point, base 5 3
Point, complex 50
Point, external 165—166 170—171 201
Point, ideal 38 74
Point, imaginary 50
Point, internal 165—166 170—171 201
Point, model 225
Point, multiplicity of a 52 222
Point, proper 74
Point, real 50 225
Point, simple 52 222
Point, singular 52 222
Points, complex conjugate 50
polar 33
Polar line 245
Polar, conic 245
Polar, first 245—246
Polar, quadric 245
Polar, quadric, indeterminate 245
Polar, second 245—246
Polarity 32—37 110—115
Polarity in the plane 169—174
Polarity on a line 123
Polarity, Hermitian 35—36 110 147—148
Polarity, null 34—36 110—111 124
Polarity, ordinary 34 36 110 169—173
Polarity, pseudo 34 36 112—113 173—174
Polarity, symplectic 34 36
Polarity, unitary 34 36
Pole 33
Polygon 55
Polygram 55
Polynomial 2 174—186
Polynomial, characteristic 43 46—48
Polynomial, invariants of a 14—27
Polynomial, minimum 43
Polynomial, permutation 2 174—186
Polynomial, primitive 6 83
Polynomial, subprimitive 6—7 46—48 74—76
Polystigm 55
Primal 49
Primal, absolutely irreducible 50
Primal, component of a 50
Primal, degree of a 50
Primal, irreducible 50
Primal, order of a 50
Primal, regular component of a 50
Prime 29
Prime coordinates 32—33
Primitive element 1 6—8
Primitive element, polynomial 6 S3
Primitive element, root 1 6—8
Principle of duality 31
Projective group 40 124—128 149—157 244 419—424
Projective group, space 29
Projective group, space, axioms for 38—39
Projective group, special linear group 41 419—424
Projective group, triad 377
Projective group, triangle 376
Projectivity 30
Projectivity between two lines 157—161
Projectivity in the plane 149—157
Projectivity on a line 119 124—128
Projectivity, canonical form for a 40—46 124—128 149—157
Projectivity, cross-axis of a 161
Projectivity, cyclic 74—96 155
Projectivity, extended symbol of a 45—46
Projectivity, orbits of a 152—156
Projectivity, order of a 48—49
Projectivity, standard 152
Projectivity, symbol of a 45—46
Pseudo polarity 34 36
Pseudo polarity in the plane 173—174
Pseudo polarity on a line 124
Pseudo polarity, canonical form for a 112—113
Quadrangle 55
Quadrangle, complete 55
Quadratic equations 3 13
Quadric 97—115
Quadric on a line 122
Quadric, canonical form for a 98—102 104—107
Quadric, character of a 107 110
Quadric, condition for singularity of a plane 144—146
Quadric, degenerate 97
Quadric, elliptic 106—111 114—115
Quadric, group of a 110
Quadric, hyperbolic 106—111 114—115
Quadric, nucleus of a 114
Quadric, number of points on a 108—110
Quadric, parabolic 106—111 114—115
Quadric, plane 140—141 144—146
Quadric, projective index of a 107
Quadrilateral 55
Quadrilateral, complete 55
Quartic equations 13 16—18 22—27
Quasi-conical set 190—196
Quintuple, negative 134—135
Quintuple, positive 134—135
Rank of a k-arc 201 205—206
Rank of a point 204
Real index of a point 222
Real point 50 225
Real tangent 222
Reciprocity 33
Reducible variety 51
Regular component 50
Regular oval 174 182 209—211
Representing vector 29
Resultant 10
S-invariant 3—11
s-line 393
Secant 70
Second polar 245—246
Secundum 29
Segre's Theorem 165—169
Self-conjugate point 33
Self-conjugate prime 33
Self-polar triangle 171—174
Series, complete 54
Series, linear 54
Similarity of matrices 43
Simple point 52 222
Simplex of reference 32
Singular cubic curve 254—268
Singular plane quadric 140—141 144—146
Singular point 52 222
Solid 29
Space, tangent 52
span 70
Special linear group 41 419—424
Spinode 223
SPREAD 70 72—74 83
Spread, k-fold 81
Standard projectivity 152
Sub-Hermitian curve 148—149 229
Subexponent 6—7
Subgeometry 85—96
Subprimitive polynomial 6—7 46—48 74—76
Subprimitive root 6—9 91—92
subspace 29 52—53
Subspaces, characterization of 67—69
Subspaces, number of 65—67
Subspaces, sets of 69—74
Superharmonic tetrad 121 129 133—135
surface 49 51
Symbol of a linear transformation 45—46
Symbol of a projectivity 45—46
Symmetric fc-arc 207
Symplectic group 419—424
Symplectic Polarity 34 36
t-design 37
Tactical configuration 37
Tactical configuration, 160—161
Tactical configuration, 160—161
Tactical configuration, 242—243
Tangent line to a curve 222
Tangent line to a k-set 70
Tangent line to a variety 52
Tangent line, prime 110 114
Tangent line, space 52
Tangential coordinates 32—33
Tetragram 55
Tetrastigm 55
Tetrastigm, diagonal points of a 138
Translation Oval 182—186
triangle 55
Triangle, inflexional 271 276
Triangle, self-polar 171—174
Trisecant 70
Uniform k-arc 212—214
Unisecant 70
Unisecant of a k-arc 163 166—168
Unit point 32
Unit prime 32
Unitary group 419—424
Unitary group, polarity 35—36
Variety 49 62
Variety, absolutely irreducible 51
Variety, component of a 51
Variety, degree of a 51
Variety, dimension of a 51
Variety, Hermitian 97—115
Variety, irreducible 51—53
Variety, order of a 51
Variety, point of a 49
Variety, quadric 97—115
Variety, reducible 51
Vector space 29
Vertex 54
Ðåêëàìà