Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Hirschfield J.W. — Projective Geometries over Finite Fields
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Projective Geometries over Finite Fields
Àâòîð: Hirschfield J.W.
Àííîòàöèÿ: This book is an account of the combinatorics of projective spaces over a finite field, with special emphasis on one and two dimensions. With its successor volumes, Finite projective spaces over three dimensions (1985), which is devoted to three dimensions, and General Galois geometries
(1991), on a general dimension, it provides the only comprehensive treatise on this area of mathematics. The area is interesting in itself, but is important for its applications to coding theory and statistics, and its use of group theory, algebraic geometry, and number theory. This new edition is
a complete reworking, containing extensive revisions, particularly in the chapters on generalities, the geometry of arcs in ovals, the geometry of arcs of higher degree, and blocking sets. Part I gives a survey of finite fields and an outline of the fundamental properties of projective spaces and
their automorphisms; it includes the properties of algebraic varieties and curves used throughout the book and in the companion volumes. Part II covers, in an arbitrary dimension, the properties of subspaces, of partitions into both subspaces and subgeometries, and of quadrics and Hermitian
varieties, as well as polarities. Part III is a detailed account of the line and plane; with little reference to the generalities from Parts I and II, the author revisits fundamental properties of the plane and then describes the structure of arcs and their relation to curves. This part includes
chapters on blocking sets and on small planes (those with orders up to thirteen). With a comprehensive bibliography containing over 3,000 items, this volume will prove invaluable to researchers in finite geometry, coding theory and combinatorics. — This text refers to the
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1980
Êîëè÷åñòâî ñòðàíèö: 488
Äîáàâëåíà â êàòàëîã: 22.05.2008
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
(k,l)-set 70—71
(k,l)-span 70
(k,l; r, s; n, q)-set 70
(k,r; n,q)-set 70
(k; r,s; n, q)-set 70
(k;n)-arc 320—364
(k;n)-arc of type 321
(k;n)-arc of type m 321—322
(k;n)-arc, complete 373
(k;n)-arc, deficiency of a 345—355
(k;n)-arc, i-secant of a 320—321
(k;n)-arc, maximal 324—335
(k;n)-arc, of type (0, 1, n) 342—343
(k;n)-arc, of type (m,n) 335—345
(k;n)-arc, t-maximal 335 338—341
(k;n)-arc, t-minimal 338—341
(k;r)-arc 70
(k;r)-cap 70
a-arc 186—199 235
Absolutely irreducible primal 50
Absolutely irreducible primal, variety 51
Acnode 223
Affine space 37 332—335
Affine space, axioms for 38—40
Arc, Herraitian 329 337—341 343—345
Arc, maximal 324—335
Associated point 128 132—133
Automorphism of a field 1 4
Automorphism of a space 30
Axioms for affine space 38—40
Axioms for projective space 38—39
B-point 393—395 397—404 408—414
Base point 55
Basis for a coordinate system 32
Bezout's theorem 223
Bisecant 70
Bisecant of a k-arc 165
Block 57
Blocking set 366—385
Blocking set, k-arc derived 366—367
Blocking set, minimal 366—368 373
Brianchon hexagon 393
Brianchon hexagon, point 393—395 397—404 408—414
Camot's theorem 57—58
Canonical form for a Hermitian variety 98—99
Canonical form for a polarity 110—115
Canonical form for a projectivity 40—46 124—128 149—157
Canonical form for a quadric 98—102 104—107
Category of a polyomial 13 19—20
Category of an element 4 13
Ceva's theorem 60
Character of a field 19
Characteristic of a field 1
Chord of a k-set 70—71
Class of a cubic curve 252
Collineation 30
Collineation, group 40—41 244 419—424
Committee 366 373
Companion matrix 44
Complete k-arc 163 232—239
Complete K-set 70
Complete series 54
Complex conjugate points 50
Complex inflexion 249 271
Complex point 50
Component of a curve 221
Component of a curve, irregular 221
Component of a curve, linear 221
Component of a curve, regular 221
Component of a primal 50
Component of a variety 51
Cone 51
Configuration, collineation group of a 244
Configuration, permutation group of a 244
Configuration, projective group of a 244
conic 107 140—146 235—239
Conic, nucleus of a 143
Conic, projective group of a 143—144 156—157
Conjugacy classes in GL(2,q) 124—125
Conjugacy classes in GL(3,q) 149—152
Conjugacy classes in PGL(2tq) 124—128
Conjugacy classes in PGL(5,q) 149—157
Conjugacy classes, number of 42 61—62
Conjugate points 33
Conjugate points, primes 33
Coordinate of a line 166
Coordinate system 31—32
Coordinate, non-homogeneous 54 119
Coordinates, prime 32—33
Coordinates, tangential 32—33
Correlation 33
Cross-axis of a projectivity 161
Cross-ratio 22—23 119—120
Crunode 223
Cubic curve with an isolated double point 226 259—268
Cubic curve with nine inflexions 278—280
Cubic curve with no inflexions 308—311
Cubic curve with one inflexion 282—307
Cubic curve with three inflexions 280—282
Cubic curve, equations 13 16 18—22
Cubic curves 225—226 241—318 357—358 361—363
Cubic curves equianharmonic 253 277
Cubic curves general 254 277
Cubic curves harmonic 253 277
Cubic curves nodal 226 254—256 267—268
Cubic curves non-singular 270—318
Cubic curves nucleus of 241
Cubic curves number of points on 311—313
Cubic curves singular 254—268
Cubic curves superharmonic 253
Cubic curves, classification of non-singular 313—318
Cubic curves, classification of singular 266—268
Cubic curves, cuspidal 226 256—259 267—268
Curve 49 51
Curve, genus of a 226—227
Curve, Hermitian 146—148 227 243
Curve, sub-Hermitian 148—149 227
Curves, cubic 225—226 241—318 361—363
Cusp 223
Cyclic projectivity 74—96 155
d-secant 70
Degree of a primal 49
Degree of of a variety 51
Desargues's theox-em 160—161
Design 37
Diagonal points of a pentastigm 139—140
Diagonal points of a tetrastigm 138
Diagonal points of an n-stigm 139—140
Dickson's criterion 3
Dimension of a projective space 29
Dimension of a variety 51
Dimension of a vector space 29
Dimension of an affine space 37
Discriminant 3 10
Dual space 31
Duality, principle of 31
Elation 153
Elementary divisor 43—46
Elementary divisor, operation 43
Elliptic quadric 106—111 114—115
Equations, cubic 13 16 18—22
Equations, equianharmonic quartic 22 25—27
Equations, harmonic quartic 22
Equations, quadratic 3 13
Equations, quartic 13 16—18 22—27
Equianharmonic quartic equations 22 25—27
Equianharmonic tetrad 121—122 130—131
Equivalence of matrices 43
EXPONENT 6
Extended symbol of a linear transformation 45—46
Extended symbol of a projectivity 45—46
External line of a k-arc 163
External line of an oval (conic) 165—166 170—171
External line, point of a k-arc 201
Field 1
finite 1
Finite fields 1—27
Finite fields, addition tables for 425—429
First polar 245—246
FORM 49
Fundamental theorem of projective geometry 30—31
General linear group 41 419—424
Generalized quadrangle 37
Grade of a point 164
Group, collineation 40—41 244 419—424
Group, general linear 41 124—125 149—152 419—424
Group, isomorphisms 422—424
Group, order of a semi-linear 420—421
Group, permutation 244
Group, projective 40 124—128 149—157 244 419—424
Group, projective, orthogonal 110 143—144 156—157 419—424
Group, projective, pseudo symplectic 113 174 419—424
Group, projective, special linear 41 419—424
Group, projective, symplectic 113 419—424
Group, projective, unitary 110 147 419—424
Group, special linear 41 419—424
Harmonic 152
Harmonic homology 152
Harmonic homology, polar 248
Harmonic homology, quartic equation 22
Harmonic homology, separation 120
Harmonic homology, syntheme 129—130
Harmonic homology, tetrad 120—121 129—131 133—135 169—170
Harmonic homology, tetrad, negative 134—135
Harmonic homology, tetrad, positive 134—135
Hasse — Weil theorem 225—232
Hermitian arc 329 337—341 343—345
Hermitian curve 146—148 228—229 243
Hermitian polarity 35—36 110 147—148
Hermitian variety 97—100 102—103 110—111 115
Hermitian variety in the plane 146—148
Hermitian variety on a line 122—123
Hermitian variety, canonical form for a 98—99
Hermitian variety, degenerate 97
Hermitian variety, group of a 110
Hermitian variety, number of points on a 102—103
Hessian of a cubic curve 246
Hessian polynomial 18—22
Hessian, indeterminate 248
Hexagon 55
Hexagon, Brianchon 393
Hexagon, Pascal 394
Hexastigm 55
Hexastigms, number of, not on a conic 142—143
Homology 152
Hyperbolic quadric 106—111 114—115
Hypercompanion matrix 44
Hyperplane 29
Hypersurface 49
Ideal line 38 74
Ideal point 38 74
Imaginary point 50
Incidence of subspaces 29
Incidence structure 37—40 74
Index of a k-arc 201 205—206
Index of a point 164
Inflexion 222
Inflexion of a cubic 246—250
Inflexional line 277
Inflexional tangent 246
Inflexional triangle 271 277
Internal point of a conic 165—166 170—171
Internal point of a k-arc 201
Intersection cycle 253
Intersection multiplicity 52 223
Intersection of subspaces 30
Invariant factor 43—44 46
Invariant, absolute 278 308
Invariants of polynomials 10—27
Involution 126—128
Involution, elliptic 126—128
Involution, hyperbolic 126—128
Involution, improper 126—128
Involution, parabolic 126—128
Involution, proper 126—128
Irreducible primal 50
Irreducible variety 51
Isolated double point 222
Isomorphisms of groups 422—424
Join 30
k-arc 54—55 70 163—219 387—414
k-arc, bisecant of a 163
k-arc, complete 163 205—208 214—219 232—239
k-arc, external line of a 163
k-arc, external line of a, point of a 201
k-arc, grade of a point off a 164
k-arc, index of a 201 205—206
k-arc, index of a, of a point off a 164
k-arc, internal point of a 201
k-arc, rank of a 201 205—206
k-arc, rank of a, of a point off a 204
k-arc, symmetric 207
k-arc, uniform 212—214
k-arc, unisecant of a 163 166—168
k-arcs, number of 137
k-cap 70
k-fold spread 81
k-set 69—71
k-set, chord of a 70—71
k-set, complete 70
k-set, tangent to a 70
Lagrange's interpolation formula 2
Line 29 38 119—135
Line, Hermitian variety on a 122—123
Line, ideal 38 74
Line, inflexional 277
Line, polarity on a 123
Line, projectivity on a 119 124—128
Line, proper 74
Line, quadric on a 122
Line, tangent 52
Linear independence 29
Linear series 54
Linear subsystem 53
Linear system 53—60
Linear transformation, extended symbol of a 45—46
Linear transformation, order of a 48—49
Linear transformation, symbol of a 45—46
Lines, parallel 38 332—335
Meet of subspaces 30
Menelaus's theorem 57—58
Model point 225
Multiplicity of a point 52 222
n-arc 54—55
n-curve 359—364
n-curve, complete 360
n-curve, multiple point on an 359—361
n-curve, multiplicity of a point on an 359
n-curve, simple point on an 359
N-gram 54—55
n-point 54—55
n-side 54—55
n-stigm 54—55
n-stigms, number of 137
Net 53
Node 222
Non-Desarguesian plane 74
Non-homogeneous coordinate 54 119
Nucleus of a (q+1)-arc 164—165
Nucleus of a conic 143
Ðåêëàìà