Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hirschfield J.W. — Projective Geometries over Finite Fields
Hirschfield J.W. — Projective Geometries over Finite Fields



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Projective Geometries over Finite Fields

Àâòîð: Hirschfield J.W.

Àííîòàöèÿ:

This book is an account of the combinatorics of projective spaces over a finite field, with special emphasis on one and two dimensions. With its successor volumes, Finite projective spaces over three dimensions (1985), which is devoted to three dimensions, and General Galois geometries
(1991), on a general dimension, it provides the only comprehensive treatise on this area of mathematics. The area is interesting in itself, but is important for its applications to coding theory and statistics, and its use of group theory, algebraic geometry, and number theory. This new edition is
a complete reworking, containing extensive revisions, particularly in the chapters on generalities, the geometry of arcs in ovals, the geometry of arcs of higher degree, and blocking sets. Part I gives a survey of finite fields and an outline of the fundamental properties of projective spaces and
their automorphisms; it includes the properties of algebraic varieties and curves used throughout the book and in the companion volumes. Part II covers, in an arbitrary dimension, the properties of subspaces, of partitions into both subspaces and subgeometries, and of quadrics and Hermitian
varieties, as well as polarities. Part III is a detailed account of the line and plane; with little reference to the generalities from Parts I and II, the author revisits fundamental properties of the plane and then describes the structure of arcs and their relation to curves. This part includes
chapters on blocking sets and on small planes (those with orders up to thirteen). With a comprehensive bibliography containing over 3,000 items, this volume will prove invaluable to researchers in finite geometry, coding theory and combinatorics. — This text refers to the


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1980

Êîëè÷åñòâî ñòðàíèö: 488

Äîáàâëåíà â êàòàëîã: 22.05.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
(k,l)-set      70—71
(k,l)-span      70
(k,l; r, s; n, q)-set      70
(k,r; n,q)-set      70
(k; r,s; n, q)-set      70
(k;n)-arc      320—364
(k;n)-arc of type $(m_1, \cdots, m_r, n)$      321
(k;n)-arc of type m      321—322
(k;n)-arc, complete      373
(k;n)-arc, deficiency of a      345—355
(k;n)-arc, i-secant of a      320—321
(k;n)-arc, maximal      324—335
(k;n)-arc, of type (0, 1, n)      342—343
(k;n)-arc, of type (m,n)      335—345
(k;n)-arc, t-maximal      335 338—341
(k;n)-arc, t-minimal      338—341
(k;r)-arc      70
(k;r)-cap      70
a-arc      186—199 235
Absolutely irreducible primal      50
Absolutely irreducible primal, variety      51
Acnode      223
Affine space      37 332—335
Affine space, axioms for      38—40
Arc, Herraitian      329 337—341 343—345
Arc, maximal      324—335
Associated point      128 132—133
Automorphism of a field      1 4
Automorphism of a space      30
Axioms for affine space      38—40
Axioms for projective space      38—39
B-point      393—395 397—404 408—414
Base point      55
Basis for a coordinate system      32
Bezout's theorem      223
Bisecant      70
Bisecant of a k-arc      165
Block      57
Blocking set      366—385
Blocking set, k-arc derived      366—367
Blocking set, minimal      366—368 373
Brianchon hexagon      393
Brianchon hexagon, point      393—395 397—404 408—414
Camot's theorem      57—58
Canonical form for a Hermitian variety      98—99
Canonical form for a polarity      110—115
Canonical form for a projectivity      40—46 124—128 149—157
Canonical form for a quadric      98—102 104—107
Category of a polyomial      13 19—20
Category of an element      4 13
Ceva's theorem      60
Character of a field      19
Characteristic of a field      1
Chord of a k-set      70—71
Class of a cubic curve      252
Collineation      30
Collineation, group      40—41 244 419—424
Committee      366 373
Companion matrix      44
Complete k-arc      163 232—239
Complete K-set      70
Complete series      54
Complex conjugate points      50
Complex inflexion      249 271
Complex point      50
Component of a curve      221
Component of a curve, irregular      221
Component of a curve, linear      221
Component of a curve, regular      221
Component of a primal      50
Component of a variety      51
Cone      51
Configuration, collineation group of a      244
Configuration, permutation group of a      244
Configuration, projective group of a      244
conic      107 140—146 235—239
Conic, nucleus of a      143
Conic, projective group of a      143—144 156—157
Conjugacy classes in GL(2,q)      124—125
Conjugacy classes in GL(3,q)      149—152
Conjugacy classes in PGL(2tq)      124—128
Conjugacy classes in PGL(5,q)      149—157
Conjugacy classes, number of      42 61—62
Conjugate points      33
Conjugate points, primes      33
Coordinate of a line      166
Coordinate system      31—32
Coordinate, non-homogeneous      54 119
Coordinates, prime      32—33
Coordinates, tangential      32—33
Correlation      33
Cross-axis of a projectivity      161
Cross-ratio      22—23 119—120
Crunode      223
Cubic curve with an isolated double point      226 259—268
Cubic curve with nine inflexions      278—280
Cubic curve with no inflexions      308—311
Cubic curve with one inflexion      282—307
Cubic curve with three inflexions      280—282
Cubic curve, equations      13 16 18—22
Cubic curves      225—226 241—318 357—358 361—363
Cubic curves equianharmonic      253 277
Cubic curves general      254 277
Cubic curves harmonic      253 277
Cubic curves nodal      226 254—256 267—268
Cubic curves non-singular      270—318
Cubic curves nucleus of      241
Cubic curves number of points on      311—313
Cubic curves singular      254—268
Cubic curves superharmonic      253
Cubic curves, classification of non-singular      313—318
Cubic curves, classification of singular      266—268
Cubic curves, cuspidal      226 256—259 267—268
Curve      49 51
Curve, genus of a      226—227
Curve, Hermitian      146—148 227 243
Curve, sub-Hermitian      148—149 227
Curves, cubic      225—226 241—318 361—363
Cusp      223
Cyclic projectivity      74—96 155
d-secant      70
Degree of a primal      49
Degree of of a variety      51
Desargues's theox-em      160—161
Design      37
Diagonal points of a pentastigm      139—140
Diagonal points of a tetrastigm      138
Diagonal points of an n-stigm      139—140
Dickson's criterion      3
Dimension of a projective space      29
Dimension of a variety      51
Dimension of a vector space      29
Dimension of an affine space      37
Discriminant      3 10
Dual space      31
Duality, principle of      31
Elation      153
Elementary divisor      43—46
Elementary divisor, operation      43
Elliptic quadric      106—111 114—115
Equations, cubic      13 16 18—22
Equations, equianharmonic quartic      22 25—27
Equations, harmonic quartic      22
Equations, quadratic      3 13
Equations, quartic      13 16—18 22—27
Equianharmonic quartic equations      22 25—27
Equianharmonic tetrad      121—122 130—131
Equivalence of matrices      43
EXPONENT      6
Extended symbol of a linear transformation      45—46
Extended symbol of a projectivity      45—46
External line of a k-arc      163
External line of an oval (conic)      165—166 170—171
External line, point of a k-arc      201
Field      1
finite      1
Finite fields      1—27
Finite fields, addition tables for      425—429
First polar      245—246
FORM      49
Fundamental theorem of projective geometry      30—31
General linear group      41 419—424
Generalized quadrangle      37
Grade of a point      164
Group, collineation      40—41 244 419—424
Group, general linear      41 124—125 149—152 419—424
Group, isomorphisms      422—424
Group, order of a semi-linear      420—421
Group, permutation      244
Group, projective      40 124—128 149—157 244 419—424
Group, projective, orthogonal      110 143—144 156—157 419—424
Group, projective, pseudo symplectic      113 174 419—424
Group, projective, special linear      41 419—424
Group, projective, symplectic      113 419—424
Group, projective, unitary      110 147 419—424
Group, special linear      41 419—424
Harmonic      152
Harmonic homology      152
Harmonic homology, polar      248
Harmonic homology, quartic equation      22
Harmonic homology, separation      120
Harmonic homology, syntheme      129—130
Harmonic homology, tetrad      120—121 129—131 133—135 169—170
Harmonic homology, tetrad, negative      134—135
Harmonic homology, tetrad, positive      134—135
Hasse — Weil theorem      225—232
Hermitian arc      329 337—341 343—345
Hermitian curve      146—148 228—229 243
Hermitian polarity      35—36 110 147—148
Hermitian variety      97—100 102—103 110—111 115
Hermitian variety in the plane      146—148
Hermitian variety on a line      122—123
Hermitian variety, canonical form for a      98—99
Hermitian variety, degenerate      97
Hermitian variety, group of a      110
Hermitian variety, number of points on a      102—103
Hessian of a cubic curve      246
Hessian polynomial      18—22
Hessian, indeterminate      248
Hexagon      55
Hexagon, Brianchon      393
Hexagon, Pascal      394
Hexastigm      55
Hexastigms, number of, not on a conic      142—143
Homology      152
Hyperbolic quadric      106—111 114—115
Hypercompanion matrix      44
Hyperplane      29
Hypersurface      49
Ideal line      38 74
Ideal point      38 74
Imaginary point      50
Incidence of subspaces      29
Incidence structure      37—40 74
Index of a k-arc      201 205—206
Index of a point      164
Inflexion      222
Inflexion of a cubic      246—250
Inflexional line      277
Inflexional tangent      246
Inflexional triangle      271 277
Internal point of a conic      165—166 170—171
Internal point of a k-arc      201
Intersection cycle      253
Intersection multiplicity      52 223
Intersection of subspaces      30
Invariant factor      43—44 46
Invariant, absolute      278 308
Invariants of polynomials      10—27
Involution      126—128
Involution, elliptic      126—128
Involution, hyperbolic      126—128
Involution, improper      126—128
Involution, parabolic      126—128
Involution, proper      126—128
Irreducible primal      50
Irreducible variety      51
Isolated double point      222
Isomorphisms of groups      422—424
Join      30
k-arc      54—55 70 163—219 387—414
k-arc, bisecant of a      163
k-arc, complete      163 205—208 214—219 232—239
k-arc, external line of a      163
k-arc, external line of a, point of a      201
k-arc, grade of a point off a      164
k-arc, index of a      201 205—206
k-arc, index of a, of a point off a      164
k-arc, internal point of a      201
k-arc, rank of a      201 205—206
k-arc, rank of a, of a point off a      204
k-arc, symmetric      207
k-arc, uniform      212—214
k-arc, unisecant of a      163 166—168
k-arcs, number of      137
k-cap      70
k-fold spread      81
k-set      69—71
k-set, chord of a      70—71
k-set, complete      70
k-set, tangent to a      70
Lagrange's interpolation formula      2
Line      29 38 119—135
Line, Hermitian variety on a      122—123
Line, ideal      38 74
Line, inflexional      277
Line, polarity on a      123
Line, projectivity on a      119 124—128
Line, proper      74
Line, quadric on a      122
Line, tangent      52
Linear independence      29
Linear series      54
Linear subsystem      53
Linear system      53—60
Linear transformation, extended symbol of a      45—46
Linear transformation, order of a      48—49
Linear transformation, symbol of a      45—46
Lines, parallel      38 332—335
Meet of subspaces      30
Menelaus's theorem      57—58
Model point      225
Multiplicity of a point      52 222
n-arc      54—55
n-curve      359—364
n-curve, complete      360
n-curve, multiple point on an      359—361
n-curve, multiplicity of a point on an      359
n-curve, simple point on an      359
N-gram      54—55
n-point      54—55
n-side      54—55
n-stigm      54—55
n-stigms, number of      137
Net      53
Node      222
Non-Desarguesian plane      74
Non-homogeneous coordinate      54 119
Nucleus of a (q+1)-arc      164—165
Nucleus of a conic      143
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå