| 
		        
			        |  |  
			        |  |  
					| Авторизация |  
					|  |  
			        |  |  
			        | Поиск по указателям |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Burke E.K., Kendall G. — Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques |  
                    |  |  
			        |  |  
                    | Предметный указатель |  
                    | | P -dominated set      494 P, polynomial time      562
 p-boundary      483
 P-lower approximation      483 496
 p-median      218 220 234
 P-rough set      483 484
 P-upper approximation      483 496
 PAES      see “Pareto archived evolution strategy”
 parallel      318 353 376 530 545 571
 Parallel, algorithm      264
 Parallel, EMO methodologies      309
 Parallel, search strategy      157 178
 Parallel, VNS      230
 Parallelization      65 111 206 309
 Parameter, calibration      181
 Parameter, control parameter      131 191 194 195 198—201 203 207 320
 Parameter, optimization      320 321
 Parental solutions      98
 PARETO      491
 Pareto archived evolution strategy      296
 Pareto envelope based selection      296
 Pareto-optima! solution      273 275 276 284 290 291 302 307 308 310 544
 Pareto-optimal set      281 285 286 310
 Partial order      284
 Partial solutions      24—27 30 33 61 259
 Particle swarm optimization      308 402 416—427
 Particle swarm optimization, adaptive PSO      421
 Particle swarm optimization, advanced features      421
 Particle swarm optimization, controlling diversity      423
 Particle swarm optimization, convergence enforcement      422
 Particle swarm optimization, evolutionary algorithm      421
 Particle swarm optimization, maximum velocity      422
 Particle swarm optimization, neighborhood best velocity update      421
 Particle swarm optimization, PSO algorithm      417
 Particle swarm optimization, PSO for neural network training      417
 Particle swarm optimization, queen particle      422
 Partitioning      24 30 37 188 205 218 223 570 575
 Path consistency      242
 Pathogen      375 376
 Pattern classification      342
 PCPs      see “Probabilistically checkable proofs”
 Pearson correlation coefficient      383
 Penalty function      9
 Perceptron learning      353 354
 Perfect graph      35
 Permutation      32 36 85 166 189 321 410 576 594 599
 Permutation, closure      327—333
 Permutation, code      102
 Permutation, matrix      596
 Permutation, problem      415
 Permutation, problems      404 407—409 418 419
 Permutation, spaces      605
 Personnel scheduling      239 538 545
 PESA      see “Pareto envelope based selection”
 Phase transition      250
 Phenotype      306 386
 Pheromone      402—435
 Pheromone, matrix      405—408 410 415
 Pheromone, update      404 406 413
 Pheromone, update, best-worst      413
 Pheromone, update, elitist solution      413
 Pheromone, update, moving average      414
 Pheromone, update, online step-by-step      414
 Pheromone, update, quality-dependent      413
 Pheromone, update, rank-based      413
 Pheromone, values      406
 Plant location problem      165—167 169 170 172 175—177 216
 Plug flow tubular reactor      456
 Plug flow tubular reactor, case study      456
 Polynomial time      318
 Polynomial time, algorithm      563 574 575
 Polynomial time, approximation scheme      333 559
 Polynomial time, approximation scheme (PTAS)      569
 Polynomial time, guarantee      24
 Polynomial time, verifier      577
 Population      14 97—100 127—129
 Population, acceptance criterion      305
 Population, matrix      408
 Population, matrix update      408
 Population, population-based ACO      407
 Population, size      139
 Positive dominance cone      494 496
 Possibly      479—484 496 498—501
 Post-optimality studies      306
 Predictive system      344
 Preference-based multi-objective optimization      279
 Prefix notation      128
 Primal      23 231 572
 Primal simplex      90
 Principle of optimality      see “Bellman’s principle”
 Principled efficiency enhancement technique      99
 Prior knowledge      344 490—493 521
 Probabilistic safety factor      108
 Probabilistic tabu search      see “Tabu search probabilistic”
 Probabilistically checkable proofs      575 576
 Probabilistically selected      131 137
 probability distribution      194 342 406 572
 Probability space      342
 Problem-specific repair mechanism      102
 Production planning problem      40 43 44
 Production scheduling      241 261 466
 Propagation      242 248 251—257 261 266 268 578
 Proportional-differential-like fuzzy controller      456
 Proportional-integral-like fuzzy controller      455
 Protected division      139 142
 Pruning      26 30 36 246
 PSO      see “Particle swarm optimization”
 PTAS      see “Polynomial time approximation scheme”
 Q-learning      351 352
 Quality measure      484
 Quality of approximation      476 480 482 484 486 499 504 511 512 516 519
 Queens problem      247
 Random, 3-SAT      579
 Random, binary template      102
 Random, bouncing      424
 Random, constants      129
 Random, cut      572
 Random, enumeration      322 332 335
 Random, heuristic      540
 Random, initial weights      362
 Random, jump      234
 Random, MAX-SAT solution      573
 Random, number      99 192 232 233 323 421 423 547 549
 Random, problem      540
 Random, restart      246
 Random, sampling      113 174 322
 Random, search      141 325 336
 Random, selection      102—104 137 219 221
 Random, sequence      201
 Random, solution      232 305 559 579
 Random, value      418
 Random, variable      191 342 559 573
 Random, walk      98 105 168 601 606
 Ranking selection      98
 Real-time decision problem      178
 Recombination      98 99 113 358 530 599 604
 Recombination, landscapes      599—600
 Recombination, mutation      357
 Recombination, operators      100 109 112 304 552
 Recombination, sexual      127 137 157
 Recursion      146
 Recursive relationship      37 39 43 54 55 63
 Reduct      480 482 486 499 500 504 518 520
 Redundant criteria      499
 Reflexive      284 483 488 489 494 510 512
 Regression      138 343
 Regression tree      345
 Reinforcement learning      342 351—352 357 360 368 369 530
 Relaxation      35 70 72 73 79 113 176 178 231 568 578
 Repair      53 244 246 257 549
 
 | replacement      98 100 105 115 322 Reproduction      99 127 132 137—139 142 153 361
 Resource allocation      240 321
 Restart diversification      176
 Robot learning      343
 Robustness      181 329 366 369
 Rough approximation      477 484 485 489 492 497 498 500 502 507 513
 Rough sets      475—527
 Rough sets, certain      487
 Rough sets, certain knowledge      477 497 501
 Rough sets, certain rules      476 482 490
 Rough sets, classical rough set approach      476 477 482 507 519 520
 Rough sets, dominance-based rough set approach      477
 Rough sets, formal description      482
 Rough sets, fundamentals      478—490
 Rough sets, illustrative example      515—517
 Rough sets, possibly      479
 Rough sets, uncertain knowledge      477
 Roulette wheel      98 99
 Routing      38 44 63 178 229 230 261 415 543 544 553 578
 Rule base design, heuristic, systematic      453
 Running metrics      307
 SALSA      258
 Sarsa learning algorithm      352
 Satisfiability, Boolean      319
 Schema theorem      100 152 155
 Search space      10—11 175—177
 Selection      99—100 131
 Selection-intensity models      107
 Self-adaptive systems      357
 Separation      86 187 239 257 259 366 477
 Sequencing problems      64 79
 Sequential algorithms      570
 Sequential job scheduling      571
 Sequential mode of training      355
 Shaking      223 224 229 230 233 234
 Short-term memory      168 171
 Shortest path      27 30 32 38 45 54 60 402 405 564 593
 SICStus      258
 Similarity      276 380 392 439 488 490
 Similarity, classes      488
 Similarity, measure      381 382 449 465
 simplex      90
 Simplex, algorithm      45 46
 Simplex, method      49
 Simplex, type      24
 Simulated annealing      187—210
 Single machine total weighted tardiness problem      409
 Skewed VNS      225
 Ski-lodge problem      546—551
 Slack variable      23
 SMTWTP      see “Single machine total weighted tardiness problem”
 Social insect colonies      401
 Soft constraint      see “Constraint soft”
 Solomon’s six problem sets      544
 SPEA2      see “Strength Pareto-EA”
 Staff planning      240
 Staff scheduling      545 see
 Stagnation recovery      424
 Standard form      23
 States      38
 Steady state      98 105 457 552
 Steepest descent      215 226
 Stochastic      38 213 216 244 355 404
 Stochastic element      246 247
 Stochastic gradient ascent algorithm      416
 Stochastic noise      109
 Stochastic programming      178
 Stochastic search      151
 Stochastic search algorithm      323
 Stochastic universal selection      98 99
 Stochastic variable      152 193 194
 Stopping criterion      404 407
 Strategic oscillation      176
 Strict partial order      284
 strong typing      144
 Subcomponent complexity      108
 Subjective function      97
 subroutines      146
 Sum-of-squares clustering      218—229
 Superfluous attribute      481 485
 Supervised learning      342—357 367
 Supply chain management      240 241
 Surrogate objectives      177
 Survival of the fittest      98
 Swapping probability      101
 Swarm intelligence      401—435
 Symbolic regression      138
 Synapse      353 354
 Syntax      359 486 489 502 507 513 518
 Syntax, tree      see “Tree syntax”
 Tabu, list      61
 Tabu, list, fixed length      172
 Tabu, list, random length      172
 Tabu, list, variable length      172
 Tabu, search      165—186
 Tabu, search, multiple tabu lists      172
 Tabu, search, probabilistic      174
 Tabu, search, reactive      178
 Tabu, search, recency memory      175
 Tabu, tenure      171 172
 Takeover time models      107
 Task scheduling      240
 Tchebycheff catastrophe      212
 Temperature      190 320 377 442 446 456
 Temporal difference learning      351
 Terminal node      25 34 36 344
 Terminal set      129 138 144 146
 Termination criterion      129 131 137 140 143 151 173 174 304
 Test function, Griewank      419
 Test function, Rastrigin      419
 Test function, Rosenbrock      419
 Test function, Schaffer’s      16 419
 Test function, sphere      419
 Test problem design      309
 Thrashing behavior      245
 Threshold function      353
 Threshold methods      168
 Time continuation      113
 Time-independent      194
 Timetabling      30 59 112 261 538 542 543 552
 Tools      258
 Top-down learning      347
 Tournament selection      98 100 107 142 153 293 358 552
 Tractability      248 318 579
 Transfer functions      354
 Transformation operator      439 445 465
 Transitive      284 483 489 510 512
 transportation      240 241 254 255 261 466
 Transportation, assignment      56
 Transportation, cost      70 166
 Transportation, problem      56 57 167 169 177
 Traveling salesman problem      11—12 30 60 97 101 104 187 188 205 223 227 318 324 333 395 404 561 576 603
 Traveling salesman problem, Euclidean      333
 Traveling salesman problem, minimum traveling salesman      558 576
 TREE      25—27
 Tree, rooted point-labeled program      133
 Tree, syntax      128 135
 Truncation selection      100
 TSP      see “Traveling salesman problem”
 Turing      127 156 352
 Turing, machine      317—320 562
 Turing, machine, deterministic      317
 Turing, machine, nondeterministic      318
 Two-dimensional cutting problems      43—44
 Uncertain knowledge      369 477
 Uniform probability      137 154
 Unimodal landscapes      595
 Unimodular      45
 Union
  444 
 | 
 |  |  |  | Реклама |  |  |  |  |  |