Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Burke E.K., Kendall G. — Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques
Burke E.K., Kendall G. — Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques

Авторы: Burke E.K., Kendall G.

Аннотация:

Search Methodologies is a tutorial survey of the methodologies that are at the confluence of several fields: Computer Science, Mathematics and Operations Research. It is a carefully structured and integrated treatment of the major technologies in optimization and search methodology. The book is made up of 19 chapters. The chapter authors are drawn from across Computer Science and Operations Research and include some of the world's leading authorities in their field.

The result is a major state-of-the-art tutorial text of the main optimization and search methodologies available to researchers, students and practitioners across discipline domains in applied science. It can be used as a textbook or a reference book to learn and apply these methodologies to a wide range of today's problems. It has been written by some of the world's most well known authors in the field.


Язык: en

Рубрика: Computer science/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2005

Количество страниц: 620

Добавлена в каталог: 13.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
P -dominated set      494
P, polynomial time      562
p-boundary      483
P-lower approximation      483 496
p-median      218 220 234
P-rough set      483 484
P-upper approximation      483 496
PAES      see “Pareto archived evolution strategy”
parallel      318 353 376 530 545 571
Parallel, algorithm      264
Parallel, EMO methodologies      309
Parallel, search strategy      157 178
Parallel, VNS      230
Parallelization      65 111 206 309
Parameter, calibration      181
Parameter, control parameter      131 191 194 195 198—201 203 207 320
Parameter, optimization      320 321
Parental solutions      98
PARETO      491
Pareto archived evolution strategy      296
Pareto envelope based selection      296
Pareto-optima! solution      273 275 276 284 290 291 302 307 308 310 544
Pareto-optimal set      281 285 286 310
Partial order      284
Partial solutions      24—27 30 33 61 259
Particle swarm optimization      308 402 416—427
Particle swarm optimization, adaptive PSO      421
Particle swarm optimization, advanced features      421
Particle swarm optimization, controlling diversity      423
Particle swarm optimization, convergence enforcement      422
Particle swarm optimization, evolutionary algorithm      421
Particle swarm optimization, maximum velocity      422
Particle swarm optimization, neighborhood best velocity update      421
Particle swarm optimization, PSO algorithm      417
Particle swarm optimization, PSO for neural network training      417
Particle swarm optimization, queen particle      422
Partitioning      24 30 37 188 205 218 223 570 575
Path consistency      242
Pathogen      375 376
Pattern classification      342
PCPs      see “Probabilistically checkable proofs”
Pearson correlation coefficient      383
Penalty function      9
Perceptron learning      353 354
Perfect graph      35
Permutation      32 36 85 166 189 321 410 576 594 599
Permutation, closure      327—333
Permutation, code      102
Permutation, matrix      596
Permutation, problem      415
Permutation, problems      404 407—409 418 419
Permutation, spaces      605
Personnel scheduling      239 538 545
PESA      see “Pareto envelope based selection”
Phase transition      250
Phenotype      306 386
Pheromone      402—435
Pheromone, matrix      405—408 410 415
Pheromone, update      404 406 413
Pheromone, update, best-worst      413
Pheromone, update, elitist solution      413
Pheromone, update, moving average      414
Pheromone, update, online step-by-step      414
Pheromone, update, quality-dependent      413
Pheromone, update, rank-based      413
Pheromone, values      406
Plant location problem      165—167 169 170 172 175—177 216
Plug flow tubular reactor      456
Plug flow tubular reactor, case study      456
Polynomial time      318
Polynomial time, algorithm      563 574 575
Polynomial time, approximation scheme      333 559
Polynomial time, approximation scheme (PTAS)      569
Polynomial time, guarantee      24
Polynomial time, verifier      577
Population      14 97—100 127—129
Population, acceptance criterion      305
Population, matrix      408
Population, matrix update      408
Population, population-based ACO      407
Population, size      139
Positive dominance cone      494 496
Possibly      479—484 496 498—501
Post-optimality studies      306
Predictive system      344
Preference-based multi-objective optimization      279
Prefix notation      128
Primal      23 231 572
Primal simplex      90
Principle of optimality      see “Bellman’s principle”
Principled efficiency enhancement technique      99
Prior knowledge      344 490—493 521
Probabilistic safety factor      108
Probabilistic tabu search      see “Tabu search probabilistic”
Probabilistically checkable proofs      575 576
Probabilistically selected      131 137
probability distribution      194 342 406 572
Probability space      342
Problem-specific repair mechanism      102
Production planning problem      40 43 44
Production scheduling      241 261 466
Propagation      242 248 251—257 261 266 268 578
Proportional-differential-like fuzzy controller      456
Proportional-integral-like fuzzy controller      455
Protected division      139 142
Pruning      26 30 36 246
PSO      see “Particle swarm optimization”
PTAS      see “Polynomial time approximation scheme”
Q-learning      351 352
Quality measure      484
Quality of approximation      476 480 482 484 486 499 504 511 512 516 519
Queens problem      247
Random, 3-SAT      579
Random, binary template      102
Random, bouncing      424
Random, constants      129
Random, cut      572
Random, enumeration      322 332 335
Random, heuristic      540
Random, initial weights      362
Random, jump      234
Random, MAX-SAT solution      573
Random, number      99 192 232 233 323 421 423 547 549
Random, problem      540
Random, restart      246
Random, sampling      113 174 322
Random, search      141 325 336
Random, selection      102—104 137 219 221
Random, sequence      201
Random, solution      232 305 559 579
Random, value      418
Random, variable      191 342 559 573
Random, walk      98 105 168 601 606
Ranking selection      98
Real-time decision problem      178
Recombination      98 99 113 358 530 599 604
Recombination, landscapes      599—600
Recombination, mutation      357
Recombination, operators      100 109 112 304 552
Recombination, sexual      127 137 157
Recursion      146
Recursive relationship      37 39 43 54 55 63
Reduct      480 482 486 499 500 504 518 520
Redundant criteria      499
Reflexive      284 483 488 489 494 510 512
Regression      138 343
Regression tree      345
Reinforcement learning      342 351—352 357 360 368 369 530
Relaxation      35 70 72 73 79 113 176 178 231 568 578
Repair      53 244 246 257 549
replacement      98 100 105 115 322
Reproduction      99 127 132 137—139 142 153 361
Resource allocation      240 321
Restart diversification      176
Robot learning      343
Robustness      181 329 366 369
Rough approximation      477 484 485 489 492 497 498 500 502 507 513
Rough sets      475—527
Rough sets, certain      487
Rough sets, certain knowledge      477 497 501
Rough sets, certain rules      476 482 490
Rough sets, classical rough set approach      476 477 482 507 519 520
Rough sets, dominance-based rough set approach      477
Rough sets, formal description      482
Rough sets, fundamentals      478—490
Rough sets, illustrative example      515—517
Rough sets, possibly      479
Rough sets, uncertain knowledge      477
Roulette wheel      98 99
Routing      38 44 63 178 229 230 261 415 543 544 553 578
Rule base design, heuristic, systematic      453
Running metrics      307
SALSA      258
Sarsa learning algorithm      352
Satisfiability, Boolean      319
Schema theorem      100 152 155
Search space      10—11 175—177
Selection      99—100 131
Selection-intensity models      107
Self-adaptive systems      357
Separation      86 187 239 257 259 366 477
Sequencing problems      64 79
Sequential algorithms      570
Sequential job scheduling      571
Sequential mode of training      355
Shaking      223 224 229 230 233 234
Short-term memory      168 171
Shortest path      27 30 32 38 45 54 60 402 405 564 593
SICStus      258
Similarity      276 380 392 439 488 490
Similarity, classes      488
Similarity, measure      381 382 449 465
simplex      90
Simplex, algorithm      45 46
Simplex, method      49
Simplex, type      24
Simulated annealing      187—210
Single machine total weighted tardiness problem      409
Skewed VNS      225
Ski-lodge problem      546—551
Slack variable      23
SMTWTP      see “Single machine total weighted tardiness problem”
Social insect colonies      401
Soft constraint      see “Constraint soft”
Solomon’s six problem sets      544
SPEA2      see “Strength Pareto-EA”
Staff planning      240
Staff scheduling      545 see
Stagnation recovery      424
Standard form      23
States      38
Steady state      98 105 457 552
Steepest descent      215 226
Stochastic      38 213 216 244 355 404
Stochastic element      246 247
Stochastic gradient ascent algorithm      416
Stochastic noise      109
Stochastic programming      178
Stochastic search      151
Stochastic search algorithm      323
Stochastic universal selection      98 99
Stochastic variable      152 193 194
Stopping criterion      404 407
Strategic oscillation      176
Strict partial order      284
strong typing      144
Subcomponent complexity      108
Subjective function      97
subroutines      146
Sum-of-squares clustering      218—229
Superfluous attribute      481 485
Supervised learning      342—357 367
Supply chain management      240 241
Surrogate objectives      177
Survival of the fittest      98
Swapping probability      101
Swarm intelligence      401—435
Symbolic regression      138
Synapse      353 354
Syntax      359 486 489 502 507 513 518
Syntax, tree      see “Tree syntax”
Tabu, list      61
Tabu, list, fixed length      172
Tabu, list, random length      172
Tabu, list, variable length      172
Tabu, search      165—186
Tabu, search, multiple tabu lists      172
Tabu, search, probabilistic      174
Tabu, search, reactive      178
Tabu, search, recency memory      175
Tabu, tenure      171 172
Takeover time models      107
Task scheduling      240
Tchebycheff catastrophe      212
Temperature      190 320 377 442 446 456
Temporal difference learning      351
Terminal node      25 34 36 344
Terminal set      129 138 144 146
Termination criterion      129 131 137 140 143 151 173 174 304
Test function, Griewank      419
Test function, Rastrigin      419
Test function, Rosenbrock      419
Test function, Schaffer’s      16 419
Test function, sphere      419
Test problem design      309
Thrashing behavior      245
Threshold function      353
Threshold methods      168
Time continuation      113
Time-independent      194
Timetabling      30 59 112 261 538 542 543 552
Tools      258
Top-down learning      347
Tournament selection      98 100 107 142 153 293 358 552
Tractability      248 318 579
Transfer functions      354
Transformation operator      439 445 465
Transitive      284 483 489 510 512
transportation      240 241 254 255 261 466
Transportation, assignment      56
Transportation, cost      70 166
Transportation, problem      56 57 167 169 177
Traveling salesman problem      11—12 30 60 97 101 104 187 188 205 223 227 318 324 333 395 404 561 576 603
Traveling salesman problem, Euclidean      333
Traveling salesman problem, minimum traveling salesman      558 576
TREE      25—27
Tree, rooted point-labeled program      133
Tree, syntax      128 135
Truncation selection      100
TSP      see “Traveling salesman problem”
Turing      127 156 352
Turing, machine      317—320 562
Turing, machine, deterministic      317
Turing, machine, nondeterministic      318
Two-dimensional cutting problems      43—44
Uncertain knowledge      369 477
Uniform probability      137 154
Unimodal landscapes      595
Unimodular      45
Union $\cup$      444
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте