Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Mathematics of Physics and Modern Engineering

Автор: Sokolnikoff I.S.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1966

Количество страниц: 810

Добавлена в каталог: 24.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Irrotational flow      412
Isoclines      36
Isolated singular points      569
Iterative methods      679 684 689 721—730
Jacobian      238 212p 271
Jump of a function      520
kinetic energy      43 306p
Kronecker delta      321
Lagrange’s differential equation      26
Lagrange’s interpolation formula      699
Lagrange’s multipliers      250 254
Laplace transform      754—769
Laplace transform of derivatives      756
Laplace transform of Dirac’s “function”      759
Laplace transform, bilateral      762n
Laplace transform, convolution theorem for      762
Laplace transform, Heaviside’s theorem on      766
Laplace transform, solution by, of differential equations      756—762
Laplace transform, solution by, of integral equations      767
Laplace transform, tables of      770
Laplace transform, unilateral      762n
Laplace — de Moivre limit theorem      648
Laplace’s difference equation      511 735
Laplace’s equation      409 413 416 419 464 467 735
Laplace’s law in probability      647
Laplacian operator      387
Laplacian operator in curvilinear coordinates      407
Laurent’s expansion      564
Laurent’s expansion, uniqueness of      567
Laurent’s theorem      565
Law of errors      662
Law of Large Numbers      650
Law of mechanics      302
Law of probability, binomial      639 647
Law of probability, normal      647 653
Law of reflection      297p
Law of refraction      297p
Law of small numbers      654
Law, Newton’s      see “Newton’s law”
Law, parallelogram      288 529
Least squares      663p 702
Least squares, connection with orthogonal functions      200
Least squares, curve fitting by      702
Lebesgue integral      774
Lebesgue theorem      775
Legendre polynomials      159
Legendre polynomials, expansion in series of      196 473
Legendre polynomials, generating function for      159p
Legendre polynomials, orthogonality of      198
Legendre polynomials, Rodrigues’ formula for      159p
Legendre’s equation      158
Leibniz’ formula for differentiation of integrals      262
Leibniz’ formula, use in evaluating integrals      263
Leibniz’ test      128
Length of arc      301 362
Length of arc of an ellipse      147
Level surface      369
Line integrals      373
Line integrals in complex plane      545
Line integrals independent of path      378 393
Line integrals of analytic functions      547—554
Line integrals of vector functions      374
Line integrals, transformation of      382—402
Line, equation of      306
Linear algebraic equations      350 687 689 749
Linear dependence      52 70
Linear dependence of vectors      317
Linear differential equations      see “Ordinary differential equations”
Linear fractional transformation (bilinear transformation)      577p
Linear operators      336 754
Linear transformation      332
Linear vector spaces      316
Linearity, property of      51
Lipschitz condition      38
Log z      537 581
Logarithmic function      537 581
Logarithmic function, principal value of      537
Lower bound      773
M test      134
MacLaurin’s Formula      260
Maclaurin’s series      144
Mapping, by analytic functions      575—594
Mapping, conformal      see “Conformal mapping”
Mass, center of      303
Mass, motion of      44 304
Matrices, algebraic operations on      327—331
Matrices, inversion of      333 350
Matrices, product of      328
Matrices, transformation of      340—350
Matrix      327 749
Matrix identity      329
Matrix, augmented      750
Matrix, characteristic equation of      344
Matrix, characteristic values of      344
Matrix, conjugate      343
Matrix, determinant of      750
Matrix, diagonal      329 339 343
Matrix, hermitian      349
Matrix, inverse of      333
Matrix, orthogonal      340
Matrix, rank of      330 750
Matrix, scalar      329
Matrix, singular      331
Matrix, square      327
Matrix, symmetric      347
Matrix, transpose of      334
Matrix, unit      329
Matrix, unitary      343p 350
Matrix, zero      329
Maxima and minima      246
Maxima and minima, absolute      247
Maxima and minima, constrained      249 269
Maxima and minima, relative      247 (see also “Calculus of variations”)
Maximum modulus theorem      558
Maximum principles      506 507
Maxwell — Boltzmann distribution      633
Mean errors      200 659 660
Mean errors, reliability of estimate of      670
Mean-value theorem for integrals      380
Mean-value theorem of differential calculus      224
Measurable set      773
Measure      772
Measure numbers      291 319
Measure theory      614 772
Mechanics, laws of      302
Median value      637p
Membrane under gas pressure      482p
Membrane, of rectangular      474
Membrane, vibration of circular      480
Metric coefficients      360
Minima      see “Maxima and minima”
minimax      249
Minimizing curve      265
Minimum descent, curve of      269p 767
Minimum potential-energy principle      264
Minors of a determinant      741
Modes      477 481
Modulus of a complex number      528
Moment of dipole      497
Moment of force      303
Moment of inertia      274
Moment of momentum      305
Moment, bending      435p
Momentum vector      305
Momentum, angular      305
Momentum, linear      42 44
Momentum, moment of      305
Monte Carlo methods      652
Multiple integrals      270
Multiply connected region      383
Mutually exclusive events      610 619
Nabla or del, $\nabla$      370
Neighborhood of a point      540
Neumann’s function      503
Neumann’s function for hall plane      504
Neumann’s problem      503
Newtonian potential      277p 409
Newton’s interpolation formulas      696
Newton’s law of attraction      46 409
Newton’s Law of Cooling      461
Newton’s law of gravitation      46 408
Newton’s law of motion      12 43
Newton’s method of solving equations      684
Nodal lines      477
nodes      129 415
Normal acceleration      313
Normal derivatives      241 369
Normal distribution      633 651
Normal distribution, bivariate      666
Normal equations      703
Normal law of probability      647
Normal law of probability, intorpretation of      653
Normal line      309 (see also “Normal”)
Normal to a curve      311
Normal to a surface      309 369
Normal, principal      311
Numerical analysis      673—736
Numerical differentiation      698
Numerical integration      715
Numerical solution of differential equations      37 721—736
Odd functions      183
Odd functions, Fourier expansion for      185
Operator, $\Delta$      510 692
Operator, $\nabla$      370 386 407 692
Operator, $\nabla^2$      387
Operator, curl      398 407
Operator, D      57 430p
Operator, difference      510 692
Operator, div      386 406
Operator, Fourier transform      482
Operator, Laplace      387
Operator, Laplace transform      754
Operator, linear      336 754
Order of differential equations      6 29 76 425
Order, interchange in partial differentiation      221
Order, inversions of      742
Order, reduction of      29 76
Ordinary differential equations      1—106
Ordinary differential equations of electric circuits      81 100 761p
Ordinary differential equations with constant coefficients      54 66 100
Ordinary differential equations with separable variables      18
Ordinary differential equations, Abel’s theorem for      54p
Ordinary differential equations, Bernoulli’s      27
Ordinary differential equations, Bessel’s      159
Ordinary differential equations, boundary-value pioblems in      91 730
Ordinary differential equations, Cauchy’s      78
Ordinary differential equations, Chaplygin’s method for      37
Ordinary differential equations, characteristic equation for      54 67 101
Ordinary differential equations, Clairaut’s      27p
Ordinary differential equations, Euler — Cauchy’s      78
Ordinary differential equations, Euler’s      267
Ordinary differential equations, exact      20
Ordinary differential equations, existence and uniqueness theorems for      5 7 38 157
Ordinary differential equations, first-order      17—50
Ordinary differential equations, Fuchs’ theorem on      157
Ordinary differential equations, Gauss’ hypergeometric      165p
Ordinary differential equations, homogeneous, first-order      18
Ordinary differential equations, homogeneous, linear      51 54 59 96
Ordinary differential equations, homogeneous, systems of      100 733
Ordinary differential equations, hypergeometric      165
Ordinary differential equations, indicial equations for      161
Ordinary differential equations, initial-value problem for      9 90 730
Ordinary differential equations, integral curves for      7
Ordinary differential equations, integrals of      7
Ordinary differential equations, integrating factors for      22
Ordinary differential equations, integration between limits      13
Ordinary differential equations, isoclines for      36
Ordinary differential equations, Lagrange’s      26
Ordinary differential equations, Legendre’s      158
Ordinary differential equations, linear      23 51 59
Ordinary differential equations, linear, complementary function for      59n
Ordinary differential equations, linear, systems of      95 733
Ordinary differential equations, linear, with constant coefficients      54 66
Ordinary differential equations, linear, with variable coefficients      51 59 70 153
Ordinary differential equations, order of      6 425
Ordinary differential equations, reduction of      29 76
Ordinary differential equations, solutions of      6
Ordinary differential equations, solutions of, by Laplace transform      756—768
Ordinary differential equations, solutions of, by numerical methods      37 721—736
Ordinary differential equations, solutions of, by power series      153
Ordinary differential equations, solutions of, general      10 52 59 67 102
Ordinary differential equations, solutions of, linearly independent      7 59 72 76p
Ordinary differential equations, solutions of, particular      7 59 72 76p
Ordinary differential equations, solutions of, singular      8 34
Ordinary differential equations, solutions of, stability of      103 105
Ordinary differential equations, solutions of, uniqueness of      7 38 157
Ordinary differential equations, systems of      95 110 727
Ordinary differential equations, systems of, characteristic equation for      101 733
Origin      288
Orthogonal coordinates      363
Orthogonal curves      31
orthogonal matrices      340
Orthogonal sets of functions      195
Orthogonal sets of functions, completeness and closure of      203
Orthogonal sets of functions, expansion in series of      201
Orthogonal sets of functions, relation of least squares to      202
Orthogonal trajectories      30
Orthogonal transformations      340
Orthogonal vectors      319
Orthogonality weighted      197
Orthogonalization of matrices      340 350
Orthogonalization of vectors      320
Orthonormal functions      195 197
Orthonormal vectors      320
Oscillations of cable      445 454
Oscillations of spring      80 82 86 88 89
Oscillations, damped      449
Oscillations, period of      44 81 84
Osculating plane      311
Parabolic coordinates      408p
Parabolic differential equation      506
Parabolic differential equation, difference equation for      512
Parabolic minor      33
Parallelogram law of addition      288 529
Parseval’s equality      202 204p
Partial differential equations      5 425—521
Partial differential equations of elliptic type      504
Partial differential equations of heat flow      414 455
Partial differential equations of hydrodynamics      416 429
Partial differential equations of hyperbolic type      504 516
Partial differential equations of parabolic type      504 516
Partial differential equations of potential theory      409 411n
Partial differential equations of vibrating membranes      475 480
Partial differential equations of vibrating rods      435p 485p
Partial differential equations of vibrating string      431 484
Partial differential equations of wave motion      428
Partial differential equations, boundary conditions for      443
Partial differential equations, canonical forms of      517
Partial differential equations, characteristic values for      507p
Partial differential equations, characteristics for      441 521
Partial differential equations, solutions of, by Fourier transform      482—490
Partial differential equations, solutions of, by integrals      482—504
Partial differential equations, solutions of, by Laplace transform      769p
Partial differential equations, solutions of, by series      448—482
Partial differential equations, solutions of, fundamental      521
Partial differential equations, solutions of, numerical      734
Partial differential equations, solutions of, uniqueness of      505—510
Partial differentiation      219
Partial differentiation, interchange of order in      221
Partial sum of series      111
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте