Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Mathematics of Physics and Modern Engineering

Автор: Sokolnikoff I.S.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1966

Количество страниц: 810

Добавлена в каталог: 24.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Differential, exact      22b 380
Differential, total      226 234
Differentiation numerical      698
Differentiation of analytic functions      542
Differentiation of composite functions      230
Differentiation of definite integrals      261
Differentiation of determinants      743
Differentiation of Fourier series      210
Differentiation of implicit functions      230 235
Differentiation of infinite series      135
differentiation of power series      140
Differentiation of vector functions      299
Differentiation partial      219
Differentiation, chain rule for      228
Diffusion      14 416 463n
Diffusivity      463n
Dimensional analysis      433
Dipole      408p 496
Dirac’s delta function      761
Dirac’s distribution      759
Direction cosines      370
Directional derivative      243 253 369
Dirichlet’s conditions      180
Dirichlet’s kernel      205
Dirichlet’s problem      467 502 511 595
Dirichlet’s problem for a circle      469
Dirichlet’s problem for a half plane      484
Dirichlet’s problem for a half space      503
Dirichlet’s problem for arbitrary regions      595
Dirichlet’s Theorem      180
Discontinuity, simple      178
Discrete distributions      627 628
Discrete variables      628
dispersion      427
Distribution function      632
Distributions, binomial      639 640p
Distributions, bivariate      666
Distributions, continuous      631
Distributions, discrete      627 628
Distributions, Gaussian      633
Distributions, Maxwell — Boltzmann’s      633
Distributions, Normal      633 651
Distributions, Poisson’s      633
Divergence      384
Divergence in cartesian coordinates      386
Divergence in curvilinear coordinates      406
Divergence theorem      388 493
Dot product      see “Scalar product”
Double layer      497
Dummy or summation index      324
Dynamics, laws of      302
D’Alembert’s solution of wave equation      439 485
e      655n
Eigenfunction (characteristic function)      732
Eigenvalue (characteristic value)      341 507p 732
Eigenvector (characteristic vector)      314
Elastic curve      16 86p
Elastic curve, curvature of      16
Elasticity      599
Electric circuits      81 87 100 756
Electromechanical analogies      81
Electron, acceleration of      45 46p
Electron, mass-to-charge ratio      100p
Electrostatic field      592 594
Electrostatics      407 496
Ellipse, length of      147
Elliptic differential equation      505
Elliptic differential equation, difference equation for      511 518
Elliptic integrals      49 86p 148
Emissivity      463
Empirical formulas      701
Energy, conservation of      43 48
Energy, kinetic      43 306p
Energy, potential      43 264
Envelope      35
Equation of continuity      412 417
Error function (probability integral), table      776
Errors, estimate of      658 660
Errors, Gauss’ law of      662
Errors, in solving differential equations      38 104
Errors, mean-absolute      662
Errors, mean-square      662
Errors, probable      662
Errors, theory of      658
Essential singular points      570 574
Estimate of errors      658 660
Estimate of variance      669
Estimate, maximum likelihood      610 660
Estimate, reliability of      670
Estimate, unbiased      610
Euclidean space      321 371n
Euler — Fourier formula      175 196
Euler’s critical load      92
Euler’s differential equation      78
Euler’s differential equation, invariational calculus      267
Euler’s formula for exponentials      173 536
Euler’s formula for Fourier coefficients      175 196
Euler’s hydrodynamical equations      419
Euler’s polygonal curves      721 727
Euler’s theorem on homogeneous functions      231
Even functions      183
Even functions, Fourier expansion for      181
Events in probability      610 618 619 638
Exact differential      220 380
exact differential equations      20
Expansion in power series      144
Expansion in series of orthogonal functions      201
Expansion of determinants      326 741
Expansion, adiabatic      50p
Expansion, Fourier      175 196
Expansion, Heaviside      766
Expansion, Laurent      561 565
Expansion, Maclaurin      144
Expansion, Taylor      144
Expectation      623 634
Expectation of product      663
Expectation of sum      624
Expected frequency      627
Expected value      623 639
Exponential function      172 536 581
Extrapolation formulas      696
extreme values      250 264
Extremum      250
Factor, integrating      22
Factorial function      162 755
Factorial, n!, approximation for      644
Falling bodies      47
Fermat’s principle      264
Field      367
Field theory      355—420
Field, conservative      408
Field, electrostatic      467 496 592 594
Field, gravitational      409 467
Field, irrotational      402
Field, solenoidal      402
Finite differences, method of      734
Flexural rigidity      93
Fluid flow      411 416 587—595
Fluid flow under dam      593
Fluid flow, ideal      419 587 592
Fluid flow, irrotational      412 588
Fluid flow, out of channel      594
Fluid flow, solenoidal      412
Fluid flow, stagnation points in      590
Fluid flow, steady      412 587
Fluid flow, uncompressible      412 418
Fluid flow, vortex in      591
Flux      384
Force field      408
Force field, electrostatic      467 496 592 594
Force field, gravitational      409
Forced vibrations      86 451
Fourier coefficients      175 196
Fourier coefficients, bounds for      211
Fourier coefficients, Parseval’s equality for      202 204p
Fourier expansion      175 196
Fourier expansion for odd functions      185
Fourier heat equation      414
Fourier integral equation      192
Fourier integrals      190 194
Fourier series      175 196
Fourier series, complex form of      192
Fourier series, convergence of      200 204
Fourier series, differentiation of      210
Fourier series, double      476
Fourier series, extension of interval for      187
Fourier series, for even and odd functions      184
Fourier series, integration of      207
Fourier series, uniqueness theorem for      186
Fourier transform      194 482—490
Free vibrations      79 432 444 446 475
Frenet — Serret formulas      312
Frequency equation      478 481
Frequency function      627
Frequency function, binomial      639
Frequency, characteristic      477 479p 482p
Frequency, relative      615 638 642
Frequency, resonant      89 477
Fresnel integrals      147 153p
Fuchs’ Theorem      157
Fundamental theorem of integral calculus      9 261 550
Gamma function      149p 162
Gas, ideal      221
Gas, viscosity of      451
Gauss — Jordan reduction      687n
Gauss — Seidel method      689n
Gauss’ distribution      633
Gauss’ divergence theorem      388
Gauss’ law of errors      662
Gauss’ reduction method      350n 687
Geometric series      115
Gradient in cartesian coordinates      370
Gradient in curvilinear coordinates      407
Gradient, $\nabla$      244 307 390
Graeffe’s root-squaring method      679n
Gram — Schmidt method      351
Graphical solution of equations      678
Gravitational attraction      277p 409
Gravitational attraction, motion under      47 49p
Gravitational constant      46
Gravitational field      407
Gravitational potential      409
Gravity dam      593
Gravity, center of      275 281
Greatest lower bound      773
Green’s function      501
Green’s function for half space      502
Green’s identities      391p 493
Green’s theorem in plane      391 402p
Green’s theorem, symmetric forms of      391p 493
Growth factor      418
Harmonic analysis      711
Harmonic function      468 560 585
Harmonic function, average value theorem for      498
Harmonic function, conjugate      560 588
Harmonic function, differentiability of      559
Harmonic function, maximum values of      499p 506 558 561
Harmonies      177
heat capacity      455
Heat equation      414 455
Heat equation, solution of, by integrals      482
Heat equation, solution of, by separation of variables      459
Heat equation, solution of, by series      455—171
Heat equation, solution of, uniqueness of      466 506
Heat flow      414 455—467 483 504 512
Heat flow in a rod      456—466 489 769
Heat flow in a sphere      471
Heat flow, connection with random walks      653
Heat flow, source function for      491 653
Heat source      489 504 653
Heaviside’s expansion theorem      766
Helix      314 316p
Helmholtz formula      499
Hermitian form      348
Hermitian matrix      349
Holomorphic function      513
homogeneous differential equations      see “Ordinary differential equations”
homogeneous functions      18 234
Homogeneous functions, Euler’s theorem on      234
Hooke’s law      80
Horner’s method      679n
Hydrodynamics      416 419
Hydrostatiс pressure      593
Hyperbolic differential equation      507
Hyperbolic differential equation, difference equation for      513
Hyperbolic functions      537 591
Hypergeometric equation      165
Ideal fluid      419
Images, method of      448 462p
Implicit functions, differentiation of      230 235
Improper integrals      see “Integrals”
Impulse function      759
Indefinite integral      551
Independence of path      378 393
Independence, linear      52 70 317
Independent events in probability      610 618 638
Inditial equation      161
Inertia, moment of      274
Infinite series      see “Series”
Inlegrals of analytic functions      515 547 551
Inlegrals of Cauchy’s type      557
Inlegrals of complex functions      515
Inlegrals, change of variables in      270
Inlegrals, contour      see “Line integrals”
Inlegrals, convergence of, absolute      755
Inlegrals, differentiation of      261 262
Inlegrals, elliptic      49 86p 118
Inlegrals, evaluation of, by fundamental theorem      9 261
Inlegrals, evaluation of, by numerical methods      717
Inlegrals, evaluation of, by residue theorem      599
Inlegrals, evaluation of, by series      117
Inlegrals, improper      118 553n 602
Inlegrals, improper, principal value of      602
Inlegrals, indefinite      551
Inlegrals, Lebesgue      774
Inlegrals, line      see “Line integrals”
Inlegrals, mean-value theorem for      380
Inlegrals, multiple      270
Inlegrals, particular      see “Particular integrals”
Inlegrals, probability      776
Inlegrals, Riemann      771
Inlegrals, Stieltjes      630
Inlegrals, surface      277 373
Inlegrals, transformation of      382—102
Inlegrals, volume      371
Inner product      see “Scalar product”
Integral calculus, fundamental theorem of      9 261 550
Integral curve      7
Integral equations      767
Integrating factor      22
Integration, numerical      715
Interpolation      679
Interpolation formulas      696 699
Interval of convergence      139
Interval, closed      132n 772n
Interval, open      218 772n
Inverse elementary functions      539p 540p
Inversions of matrices      333 350
Inversions of order      712
Irrotational field      102
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте