Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Fisher Y. — Fractal Image Compression. Theory and Application
Fisher Y. — Fractal Image Compression. Theory and Application



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Fractal Image Compression. Theory and Application

Автор: Fisher Y.

Аннотация:

This book presents the theory and application of new methods of image compression based on self-transformations of an image. These methods lead to a representation of an image as a fractal, an object with detail at all scales. Very practical and completely up-to-date, this book will serve as a useful reference for those working in image processing and encoding and as a great introduction for those unfamiliar with fractals. The book begins with an elementary introduction to the concept of fractal image compression and contains a rigorous description of all the relevant mathemtics of the subjects.


Язык: en

Рубрика: Математика/Численные методы/Вейвлеты, обработка сигналов/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 341

Добавлена в каталог: 14.11.2004

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Metric, space      25 30 33
Metric, supremum      8 14 32 44 48—52 92
Minimal range size      63 66
Minimal WFA states      243
Minimization      149
Minimization collage      13 41 52 55 92 94 153 181 232
Minimization comparisons      180
Minimization over transforms      93
Minimization search time      180
Minimization square difference      21 43
Minimum quadtree depth      55 (see also “Maximum quadtree depth”)
Minimum range size      66 69
Motion compensation      300
ms      see “Metric”
Multiresolution function      245 247 255
Multiresolution image      243—247 254
Negative scaling      58 61 64 66 69 121 127 288
Neighborhood      26 39
Nilpotent      158
Nondeterministic WFA      250
Noniterative decoding      163
Nonlinear kernel      145
Nonlinear operator      141 149
Nonlinear transforms      145
Nonorthogonal basis      160
Nonoverlapping 2 x 2 blocks      22 59 286
Nonoverlapping domains      61 146 156 169
Nonoverlapping IPS      216 293
Nonoverlapping ranges      13 119 141 154 201 298
Norm      46 143 182 187
Norm, $L^2$      204
Norm, $L^p$      44
Norm, equivalent      148
Norm, matrix      34 46 146 159 169 294
Norm, operator      143 187
Norm, p      43
Norm, quadratic      149
Norm, quadtratic      143
Normally distributed      256
Normed vector space      229
NullSpace      174
Objective function      183—187
Offset      see “Scaling” “Coefficient”
Offset in HV-partition      22 122
Offset, bits      261 263
Offset, vector      46 101
Oien, G.      xii 144 150 153 177 192 197
Open interval      33
Optimal basis      203 204 206
Optimal bit allocation      21 261 311
Optimal classification      301
Optimal clusters      179
Optimal codebook      179
Optimal collage      137 149 163 169
Optimal domain      56 122 123 148 159 309
Optimal kernel      149
Optimal number of classes      77
Optimal quantization      153 163
Optimal scaling and offset      20 21 56 77 148 156 157 159 164 307
Optimal transformations      64
Optimization, decoding      123
Optimization, direct altractor      153 171
Optimization, encoding      57 121 127 290 299
Optimization, least-squares      234
Orientation      2 14 22 38 57—59 61 79 85 121 127 136 289 290 293 294 305 308
Orthogonal      see “Basis” “Gram “Matrix”
Ortiz, L.      311
Parallel blocks      181—184 189
Parallel matrix rows      189
Parallel vectors      179
Parallelization      309
Parallelogram      38 46
Partition      226
Partition, cluster      186
Partition, curve      2 41
Partition, edge based      301
Partition, hexagonal      308
Partition, HV      17 22 119—120 122 134
Partition, image      10 13 14 19 52 90 96 154 229 298
Partition, polygonal      305
Partition, quadtree      16 21 55—56 59 160 174 259—261 289 298
Partition, range      122 142 160 163—165 168 263 288
Partition, rectangular      119
Partition, signal      141
Partition, triangular      18 22 136
Path      246 250 253
Peitgen, H.-O.      3
Peppers image      165 192 322
Perception      156 245 311
Permutation matrix      53 141
Perron — Frobenius theorem      221
Photocopying machine      see “Copy machine”
Photograph      1 138 254
Piece of signal      139
piecewise      105 137 139—147 199
PIFS      25 48 50 52 91 92 96 97 100 104 105 108 112
PIFS as a copying machine      11
PIFS bow tie      47
PIFS code      91 94 96—98 100 102 104—110 113
PIFS code, coding      96
PIFS code, decoding example      96
PIFS code, description      94
PIFS code, example      94
PIFS code, finding      92
PIFS code, hierarchical      102
PIFS code, matrix      106
PIFS code, matrix example      103
PIFS code, zooming      109
PIFS contractive      113
PIFS decoding      12
PIFS early coders      199
PIFS embedded function      104 105 106 110 112
PIFS encoding image with      50
PIFS eventually contractive      52
PIFS example      94
PIFS finding fixed point by matrix inversion      297
PIFS fixed point      11 99 109 114
PIFS fractal dimension      106
PIFS iterating      102
PIFS matrix description      100 (see also “PIFS-code”)
PIFS pyramid of fixed points      99
Pivoting      297
Pixel      1
Pixelization      4
Poinuvise convergence      44 216
Polygonal fit      301
Polygonal partition      305
Postprocessing      59 62 72 76 77 124 128 133 134 262 263 289 290 295 298
PRECISION      168
Primary classes      79
Primary Colors      45
probability      39 69 70 296
Programs, dec.c      278
Programs, enc.c      264
Projection operator      202 204
Pseudo-archetype      90
Pseudo-code      19 55
PSNR      44 62—64 70 75 85 86 128 164 166 170 173 193 240 257 298 311
Pyramid of the PIFS      99—111
Q signal      45
Quadrant      53 55—57 82 85 180 234 238 247—249 256 260 288 308
Quadrant address      244
Quadtree partition      see “Partition”
Quadtree scheme      55—77
Quantization      21 56 61—63 76 77 122 153 162 163 172 174 178 181 208 209 240 255 261 263 287 289 299
Rademacher labellings      305
Radon — Nikodym theorem      225
Ramamurthi, B.      177
Ramstad, T.      174 295
Random cluster centers      186 192
Random fluctuations      1
Random junk      8
Random points      69 296
Random strings      254
Random subset of vectors      80
RANGE      11 19 20 48 49 52 55 59 64 93 139 177 182 302
Range in HV scheme      120
Range in quadtree scheme      160 260
Range, adjacent      11 115
Range, approximation by linear combinations of domains      200 298
Range, boundary      61 124
Range, classification      see “Classification” “Domain
Range, comparing      see “Comparing”
Range, complexity      201
Range, concatenation      93
Range, contrast      12
Range, covering      14
Range, distance to domain      69
Range, Gram — Schmidt on      206
Range, index block      see “Index block”
Range, nonoverlapping      13 119 141 154 201 298
Range, number of      20 95
Range, partition      see “Partition”
Range, quadtree      55—56
Range, size      14 19 21 55 56 61 63 66 69 76 82 88 90 93 95 100 103 120—122 134 140 141 154—156 162 178 192 201 202 260 286 287 290
Range, storing      122
Range, using a particular domain      146
Reclassification of domains      57
Rectangle, grid      115
Rectangle, size      19
Rectangle, tiling      233
Rectangular domain      140 302
Rectangular image      287 290
Rectangular image sample      139
Rectangular partition      308
Rectangular partitioning      17 22 119
Rectangular ranges      229
Recurrent iterated function systems      see “RIFS”
Recursion depth in quadtree scheme      260 (see also “Maximum” “Mimimum”)
Recursive decoding      241
Recursive function definision      231 238
Recursive generation of Sierpinski Triangle      28
Recursive image partition      16—18 119 260
Recursive inference algorithm      243 250 254 255 257
Reducing complexity      see “Complexity”
Reducing dimensionality of data      199 201
Reducing domains      14 57 79 180 207
Reducing the image      see “Copy machine”
Redundancy      1 10 137
Regression      14 289
Regular      225 226 227
Resolution      3 43 62 63 91 99 102 107 109 230 231 240 243 244 250 253 254
Resolution m      230—232 235 238 240 241
Resolution, coarser, finer      110
Resolution, grey-scale      43
Resolution, independence      46 59
Resolution, infinite      8 44 245 262 300
Resolution, super      104—107
Restricted self-similarity      10
Restricting $\omega$      11 48
Restricting, domain range size ratio      122
Restricting, scaling      52 62
Results      10 61 82 126 169 170 192 209 257 311
RGB signal      45
RIFS      39 39 42 49—51 216 218 227 295
Rigor      25
Robust archetypes      88
Rotation      3 10 14 18 21 22 46 57 121 123 293 294
Sampled signal      138 139
Sampling      104 109 110 138
Sampling, resolution      234 239
San Francisco image      18 317
Saturation      45
Saupe, D.      3 302
Scalar multiplication      172 174 189 190
Scalar quantization      163 174 185
Scaling      3 10 20 21 38 52 56 62 63 121—123 145 146 148 155 163 165 174 201 261—263 289 290 294 301 307 “Maximum” “Negative” “Coefficient”)
Scaling, constrained      157
Scaling, histogram      63 163
Scaling, matrix      53 102
Scaling, positive      260 288
Scaling, relationship      26
Scaling, zero      123 289
Search      14 72 79 80 85 88 90 119 120 127 144 149 155 179 180 182 192 197 200 203 204 206 207 260 261 288 297 299
Search class      63 76
Search time      66 122
Self-similarity      9 10 17 18 26 69 70 76 91 136 142 199 229 249 301 308
Self-transformable      137 142 144
SEQUENCE      1 39 44 139 141 163 188 189
Sequence of quantizers      185
Sequence, convergent      33
Series      162 168 171 174
Set      3 4 6—9 26 30—32 37 40 41 232 234 237 238 “Attractor”)
Set of Ap-functions      244
Set of archetypes      79 82 86
Set of cluster centers      178 183 197
Set of domain pixels      171
Set of images      82 85 88
Set of measure zero      44
Set of rationals      33
Set of states      251
Set of teaching vectors      80 90
Set, empty      48
shrink      20 140 141 155 162 178 181
Shuffle      155 178 181
Sierpinski triangle      28 39 216
Signal to noise ratio      see “PSNR”
Signal, discrete      138
Signal, piece      137
Similitude      50 293
Simoncelli, E.P.      312
SIZE      19 255 “Domain” “Cluster” “Codebook”)
Size of covering      26
Size of decoding image      4
Size, automaton      254—256
Size, covering      115
Skewing      3 10 46 294
Slow convergence      63 148 157
Slow decoding      263
Slow encoding      261
Slow initialization      197
Smooth motion      300
Smoothing      see “Postprocessing”
Smoothing weights      see “Weights”
Sorting domains and ranges      56 70 85
Sorting vectors      80 81
source code      see “Code”
span      202 207
Sparse matrix      59 254 256 297
Spatial contraction      see “Contraction”
Spatial transformation      11 50 53
Speech coding      177
Spiral      38
States, WFA      243 246—248 250 252 255 256
Statistical collage argument      170
Statistical self-similarity      26
Stochastic      116
Storage      1—3 14 21 22 52 56 61 77 80 90 94 119 122 123 199 209 240 241 253 255 256 261 300 301
Stretching      3 10 46 294
Strictly contractive      143 144 156 157 163
String Cheese image      324
Subnodes      55 56
Subsainpling matrix      see “Matrix”
Subsaniple      14 19 123 124 140 141 147 148 165 301 305
subspace      158 178 181 201—207 252 “Translation”)
Subtree      254
Superposition      45
Supremum metric      see “Metric”
Supremum norm      see “Norm”
Tank Farm image      85 86 88 318
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте