Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Fienberg S., Holland P.W., Bishop Y.M. — Discrete Multivariate Analysis
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Discrete Multivariate Analysis
Àâòîðû: Fienberg S., Holland P.W., Bishop Y.M.
Àííîòàöèÿ: The scientist searching for structure in large systems of data finds inspiration in his own discipline, support from modern computing, and guidance from statistical models. Because large sets of data are likely to be complicated, and because so many approaches suggest themselves, a codification of techniques of analysis, regarded as attractive paths rather than as straitjackets, offers the scientist valuable directions to try. The literature on discrete multivariate analysis, although extensive, is widely scattered. This book brings that literature together in an organized way.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2007
Êîëè÷åñòâî ñòðàíèö: 568
Äîáàâëåíà â êàòàëîã: 14.04.2008
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
see “Freeman — Tukey”
see “Likelihood ratio statistic
notation see “Stochastic order” “Stochastic
see “Pearson's chi square”
Additive models 23—24; see also “Partitioning chi square” “Lancaster's
Agreement, measures of 393—400 501—502; measures
AID see “Automatic interaction detection”
Angular transformation for binomial 367—369 491—492; “transformations variance-stabilizing”
Anomalies in data 332—337
Arcsin transformation 367—369 491—492
Association, measures of, asymptotic variances for 374 501—502
Association, measures of, for tables 376—385
Association, measures of, for tables 385—393
Association, measures of, geometry of 383—385
Association, measures of, interpretability of 374—375
Association, measures of, norming 375—376
Association, measures of, sensitivity to margins 375 392—393; measures “Correlation “u-terms”
Association, measures of, symmetry 376
Association, surface of constant 52—53
Asymptotic theory 457—530; see also “Bayes estimators”
Automatic interaction detection 360
BAN (best asymptotic normal) 58 26 349 352 518
Bayes estimators 404—410
Bayes estimators, asymptotic results for 410—416
Bayes estimators, risk function of 406—407
Bayes estimators, small sample results for 416—419 421—424
Binomial distribution see also “Sampling distributions”
Binomial distribution, angular transformation for 332—337 367—369 491—492
Binomial distribution, asymptotic distribution of powers 478—479 488
Binomial distribution, asymptotic normality of 464—465
Binomial distribution, behavior of minimax estimators for 416—417
Binomial distribution, estimation of proportion 437
Binomial distribution, estimation of sample size 437—438
Binomial distribution, moments of 436—437
Binomial distribution, negative 316—317 339—340 452—454 500
Binomial distribution, orders of 477
Binomial distribution, variance of squared proportions 485
Binomial distribution, variance stabilization for 491—492
Birch's results for MLEs, regularity conditions for 509—5
Birch's results for MLEs, uniqueness of 69
Block-diagonal table, l8 2
Block-stairway table, l9 4 98
Block-triangular table l9 4 98
Bootstrap-Bayes estimators see “Pseudo-Bayes estimators”
Breaking-apart see “Rearranging data”
BSS (between-group sum of squares) 390
Capture-recapture models, general 246—254
Capture-recapture models, incomplete tables and 233 237—239 246—247
Capture-recapture models, interpreting dependencies in 230 255
Capture-recapture models, three-sample 237—245
Capture-recapture models, two-sample 231—237
Cell values see also “Configuration” “Zero
Cell values, elementary 13 61
Cell values, nonelementary 61
Cell values, smoothing 123 401—433
Cell values, standardized residual 136—139
Cell values, sums of 61
Chains, Markov for different strata 277—279
Chains, Markov, order of 269—270
Chernoff — Pratt theory see “Stochastic order” “Stochastic
Chi square distribution, percentage points of 527; see also “Chi square statistic”
Chi square statistic see also “Minimum logit ” “Neyman's “Pearson's
Chi square statistic, association measures based on 330—332 385—387
Chi square statistic, asymptotic distribution, under alternative hypothesis 329—330 473—474 518
Chi square statistic, asymptotic distribution, under null hypothesis 472—473 516—218
Chi square statistic, comparing several 330—332
Closed-form estimates see “Direct estimates”
Cochran's Q test 307—309
Cochran's test for combined tables 146—147
Cohen's measure of agreement, K 395—397
Collapsing, general definition of 47
Collapsing, general theorem for 47—48
Collapsing, illustration of 41—43
Collapsing, theorem for 3
Collapsing, two-way tables 27—28
Collapsing, way array 39—40
Combination of tables 365—366; see also “Mantel — Haensel test” “Collapsing”
Combining categories 27—29; see also “Collapsing”
Complete data, fitting incomplete models to 111—114; see also “Incomplete arrays” “Comprehensive
Complete tables, definition of 58
Comprehensive model, definition 38 66—67
Computer programs 7
Conditional distribution see also “Incomplete tables”
Conditional distribution, exact theory for 364—366
Conditional distribution, for Poisson variates 440—441;
Conditional tests for interaction 148 364—366
Conditional tests for marginal homogeneity 293—296 307—309
Confidence interval see also “Variance asymptotic”
Confidence interval for measures of association 374 380 382
Confidence interval, asymptotic for cell probability, p 478
Confidence interval, use of asymptotic variances for 499—500
Configuration of same order, degrees of freedom 119—122
Configuration, correspondence of, with u-terms 66
Configuration, definition of 61
Configuration, empty cells in 90
Connectivity see “Separability”
Constructing tables 25—26
Contingency tables 57
Continuous variables 360
Contrasts see “Linear contrasts”
Convergence in distribution 463—465 467—475
Convergence in distribution and 478—479
Convergence in distribution and 474
Convergence in distribution and probability 477—479
Convergence in probability 465—467
Convergence of moments 484—486
Correlation coefficient, association measures based on 380—385
Correlation coefficient, chi square and 382
Correlation coefficient, partial, related to collapsing 41
Correlation coefficient, related to cross product 14—15
Correlation coefficient, variance stabilization of 500—50
Cramer's measure of association, V 386—387
Cross-product ratio as loglinear contrast 15 26—27
Cross-product ratio related to correlation coefficient 15
Cross-product ratio related to u-terms 17—18
Cross-product ratio, association measures based on 377—380 393
Cross-product ratio, asymptotic variance of 377 494—497
Cross-product ratio, definition of 13
Cross-product ratio, functions of 379 601
Cross-product ratio, interpretation of 14—15
Cross-product ratio, properties of 14 377
Cross-validation of models 319—320
Cyclic descent, method of see “Fitting iterative proportional”
D-association see “Separability”
D-separability see “Separability”
Degrees of freedom for closed-form models 121—122
Degrees of freedom for complete tables 25 35 66 114—122
Degrees of freedom for marginal homogeneity 287 294 307
Degrees of freedom for quasi-independence 187—188
Degrees of freedom for quasi-loglinear models 216—220
Degrees of freedom for quasi-symmetry 287 303
Degrees of freedom for symmetry 283 301—302
Degrees of freedom, adjusting, for empty cells 115—119
Delta method for binomial distribution 481—482
Delta method for calculating asymptotic distributions 486—502
Delta method for capture-recapture problem 249—250
Delta method, multivariate theorem 492—497
Delta method, one-dimensional theorem 487—490
Deming — Stephan procedure see “Fitting iterative
Direct estimates for multiway incomplete tables 217 221—223 248
Direct estimates for quasi-independence 192—201
Direct estimates in three or four dimensions 74—75
Direct estimates, difference between models with 129—130
Direct estimates, equivalence to iterative 74 201—202
Direct estimates, partitioning for models with 170—171
Direct estimates, rules for detecting 76—77
Direct estimates, theorems for detecting 78—82
Dirichlet distribution 405—406
Disagreement 398—399; see also “Agreement”
Distributions see Sampling distributions
e, approximating 460—462
Empirical-Bayes see “Pseudo-Bayes”
Empty cells see “Zero entries”
Entropy, maximum, theorem relating to linear models 346; see also “Information theory”
Error, prediction, measures of reduction in 387—389
Estimability of parameters in incomplete table 219—220
Estimability, compared with connectedness 2l5
Estimation see “BAN” “Bayes “Information “Maximum “Minimum methods” “Minimum
Exact theory for tables 364—365
Exact theory for combined tables 365—366
Exact theory, practicability of 366
Exponential distribution as limit of long waiting times 467—468
Exponential distribution, distribution of minimum 477—478
Fitting, iterative proportional see also “Maximum likelihood estimates”
Fitting, iterative proportional for asymptotic variances 250—251 253—254
Fitting, iterative proportional for MLEs 83
Fitting, iterative proportional for quasi-symmetry 289
Fitting, iterative proportional in three dimensions 84—85
Fitting, iterative proportional, classical usage 97—102 337 392
Fitting, iterative proportional, convergence of 85—87 94—95 289
Fitting, iterative proportional, general algorithm 91—97
Fitting, iterative proportional, incomplete tables 188—192 217
Fitting, iterative proportional, initial estimates 92—95
Fitting, iterative proportional, properties of 83
Fitting, iterative proportional, stopping rules 95—96
Four-fold table ( table), definition of 11—12
Four-fold table ( table), descriptive parameters ofl 13—14
Four-fold table ( table), geometry of 49—55 383—385
Freeman — Tukey, chi square 130 137 513—516
Freeman — Tukey, transformation for binomial 367—368 492
Freeman — Tukey, transformation for Poisson 137 492
Freeman — Tukey, transformation, residuals for 130 137—140 334—337
Frequency of frequencies 337—342; see also “Sampling distributions”
Geometry of Bayes estimators 408—410
Geometry of measures for tables 49—55 383—385
Gini's definition of variation 389—390
Goodness-of-fit see also “Chi square” “Likelihood “Neyman's “Pearson's
Goodness-of-fit for sampling distributions 3l5—317
Goodness-of-fit of internal cells l36—141
Goodness-of-fit when model is false 329—332
Goodness-of-fit, asymptotic distribution of test statistics for 513—529
Goodness-of-fit, asymptotic equivalence of 3 statistics 513—514
Goodness-of-fit, fitting and testing for 317—324
Goodness-of-fit, multinomial general theory of 507—508
Goodness-of-fit, too good a fit 324—329
Hansen frequencies, asymptotic distribution of 489
Hierarchy of models 320—324
Hierarchy principle 33 38 67—68
Homeogeneity of proportions 347
Homeogeneity, marginal 54—55 282
Homeogeneity, test for 293—296 306—309
Homogeneous Markov chain 262
Hypergeometric distribution see also “Exact theory”
Hypergeometric distribution, multivariate 450—452
Hypergeometric distribution, univariate 488—450
Incomplete arrays for subsets of complete arrays 111 206—210 225—228
Incomplete arrays, multiway 210—225
Incomplete arrays, square tables and 283 290
Incomplete arrays, triangular 31
Incomplete arrays, two-way 178—206
Independence as lack of association 374—380
Independence in rectangular array 28—29
Independence in three-way array 38
Independence, quasi 178—182 287—293
Independence, surface of 51
Indirect estimates see “Fitting iterative “Partitioning
Information theory, minimum discrimination information (MDI) 344—347
Information theory, model generation 345—346
Information theory, modified MDI (MMDI) 295—296 347
Interaction see also “u-terms”
Interaction, assessing magnitude of 146—155
Interaction, test for 146—155 364—366
Irregular arrays 31 48;
Isolates l93
Iterative proportional fitting 83—102 188—191
Iterative scaling see “Iterative proportional fitting”
Jackknifing 3l9
K, sum of Dirichlet parameters 401—402 405—408 420—426; K”
Kullback — Liebler distance 345; see also “Information theory” “Likelihood
Lambda as measure of association 388—389
Lambda as weight for Dirichlet prior 405—406 419—426 429—433
Latent structure analysis 344
Least squares, weighted 352—357
Likelihood ratio statistic, 125—130
Likelihood ratio statistic, for direct models 129—130 158—160
Likelihood ratio statistic, for incomplete tables 191
Likelihood ratio statistic, for indirect models, bounds for 160—161
Likelihood ratio statistic, for symmetry 283
Likelihood ratio statistic, , asymptotic distribution of 513—5 6
Likelihood ratio statistic, , calculus for partitioning 169—175
Likelihood ratio statistic, , compared with Pearson's chi-square 125—126
Likelihood ratio statistic, , conditional breakdown of 120 127
Likelihood ratio statistic, , conditional test for marginal homogeneity 293—294 307
Likelihood ratio statistic, , definition of 58
Likelihood ratio statistic, , structural breakdown of 127—130
Linear contrast see also “Log-linear model” “u-terms”
Linear contrast, asymptotic variance of 494—497
Linear contrast, interpretations of 15 16 26—27 181 211—222
Linear models see “Additive models”
Log-linear model see also “Linear contrast” “Cross “Direct
Log-linear model for table 32—33
Log-linear model for table 16—17 79
Log-linear model for table 35—41
Log-linear model for table, interpretation of 37 39
Log-linear model for table 24—26 179
Log-linear model with terms of uniform order 119—121 156—158
Log-linear model, general 42—47
Log-linear model, general, interpretation of 45—47
Log-linear model, random effects models 371
Logistic response function see also “Logit model”
Logistic response function, multivariate 360
Logistic response function, univariate 357—360
Logit model for table 30
Logit model, alternatives to 367—371
Logit model, continuous variable 358
Logit model, definition of 22—23
Logit model, discrete variable 357 361
Logit model, minimum c-hi square for 355—357
Logit model, mixed variable 358
Loglinear contrasts see “Linear contrast”
Loops, closed 76
Mantel — Haenszel test 133 147—148 151
Marginal homogeneity see “Homogeneity”
margins see “Cell values” “Configuration”
Margins, lines of constant 53
Margins, measures insensitive to 392—393
Markov models for cross classified states 273—279
Markov models for different strata 277—279
Markov models, assessing order of 269—270
Markov models, assessing order of, for aggregate data 260 261
Markov models, higher order 267—270
Markov models, single sequence transitions of 270 273
Markov models, time-homogeneity 261—267 269
Maximum entropy 345—346; see also “Information theory”
Maximum likelihood estimates (MLEs) see also “Fitting Iterative proportional” “Birch's “Direct
Maximum likelihood estimates (MLEs) for marginal homogeneity 294—295 306
Maximum likelihood estimates (MLEs) for Markov chain transition probabilities Maximum likelihood estimates (MLEs) 262—263 267—268
Maximum likelihood estimates (MLEs) for quasi-symmetry 289 306—319
Maximum likelihood estimates (MLEs) for symmetry 28 330—302
Maximum likelihood estimates (MLEs), advantages of 58
Maximum likelihood estimates (MLEs), asymptotic behavior of 509 513
Maximum likelihood estimates (MLEs), conditional for closed populations 231 238
Maximum likelihood estimates (MLEs), existence of, for incomplete tables 186 216
Maximum likelihood estimates (MLEs), expansion of, for multinorniat 511—513
Maximum likelihood estimates (MLEs), methods of obtaining 71 83
Maximum likelihood estimates (MLEs), relative precision of 313—315
Maximum likelihood estimates (MLEs), suitability for likelihood ratio statistic 125—126
Maximum likelihood estimates (MLEs), uniqueness of in incomplete tables 185
Maximum likelihood estimates (MLEs), when model is incorrect 513
McNemar test 258 285
Ðåêëàìà