Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Fienberg S., Holland P.W., Bishop Y.M. — Discrete Multivariate Analysis
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Discrete Multivariate Analysis
Àâòîðû: Fienberg S., Holland P.W., Bishop Y.M.
Àííîòàöèÿ: The scientist searching for structure in large systems of data finds inspiration in his own discipline, support from modern computing, and guidance from statistical models. Because large sets of data are likely to be complicated, and because so many approaches suggest themselves, a codification of techniques of analysis, regarded as attractive paths rather than as straitjackets, offers the scientist valuable directions to try. The literature on discrete multivariate analysis, although extensive, is widely scattered. This book brings that literature together in an organized way.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2007
Êîëè÷åñòâî ñòðàíèö: 568
Äîáàâëåíà â êàòàëîã: 14.04.2008
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
MDI see “Information theory”
mgf see “Moment generating function”
Minimax estimates 407
Minimum distance measure see also “Pearson's chi square” “Neyman's “Minimum
Minimum distance measure, asymptotic variance of 518—519
Minimum distance measure, methods 504—505
Minimum logit 355—357
MLE see “Maximum likelihood estimates”
MMDI see “Information theory”
Model see also “Log-linear model” “Additive
Model, selection of 155 168
Model, simplicity in building a 312—313
Moment generating function, to show convergence 469; see also “Sampling distribution”
Moments see “Binomial distribution moments “Hypergeometric “Multinomial “Poisson
Moments, limits of 485
Moments, methods of 505 507
Moments, order of 485 486
Multinomial distribution, asymptotic normality of 469—472
Multinomial distribution, asymptotic variance of loglinear contrasts for 494—497
Multinomial distribution, estimation for 504—505
Multinomial distribution, formal stochastic structure for 480—481
Multinomial distribution, general theory for estimating and testing with a 502—508
Multinomial distribution, goodness-of-fit tests 507—508
Multinomial distribution, negative multinomial 454—456
Multinomial distribution, product multinomial 63 70—71
Multinomial distribution, sampling distribution 63 441—446
Multinomial distribution, variance of log-linear contrasts 494—497
Multiplicative models 225—228 320—324;
Multivariate normal distribution, asymptotic distribution for multinomial 469—472
Multivariate normal distribution, estimating the mean of 403
Nested models see also “Likelihood ratio statistic
Nested models, difference in 524—526
Neyman's chi square, minimizing 349—350
Neyman's chi square, with linear constraints 351—352
Neyman's chi square, with linear constraints, equivalence to weighted least squares 352—354
Noninteractive cell 181—182 193—194
Normal approximations to the binomial 464—465
Norming measures of association 375—376
Notation for models, dimension-free 61—62; see also “O notation”
O,o notation, Chernoff — Pratt 479—480 481
O,o notation, conventions in use of 459—460
O,o notation, definitions 458—459 460
O,o notation, generalized for stochastic sequences 475—484
O,o notation, related to order of moments 485—486
Occurrence in probability 482—484
Outliers 140—141
P see “Pearson's measures of association”
Panel studies 257—260 265—267
Parameters see “u-terms”
Partial association models, degrees of freedom for 121—122
Partial association models, fitting 161—165
Partitioning chi square 524—526
Partitioning chi square, calculus of Goodman 169—175
Partitioning chi square, Lancaster's method 361—364
Partitioning chi square, likelihood ratio statistic 524—526
Pdf (probability density function) 63
Pearson's chi square see also “Chi square distribution”
Pearson's chi square, asymptotic distribution of 472—474
Pearson's chi square, asymptotic relation to other statistics 513—516
Pearson's chi square, compared with 124—125
Pearson's chi square, correction for continuity 124 258
Pearson's chi square, definition of 57
Pearson's chi square, incomplete tables 191
Pearson's chi square, large samples and 329—332
Pearson's chi square, limiting distribution of under alternative 329—332 518
Pearson's chi square, limiting distribution of under null model 516—518
Pearson's chi square, limiting distribution of, for complex cases 520—522
Pearson's chi square, minimizing 348—349
Pearson's chi square, noncentral distribution 473—474 518
Pearson's measures of association, 330 385—387
Pearson's measures of association, P 382—383 385—387
Percentage points, for distribution 527—529
Poisson distribution see also “Frequency of frequencies” “Hansen “Maximum “Sampling
Poisson distribution, asymptotic distribution of powers of mean 489—490
Poisson distribution, relationship to multinomial 440—441 446—448
Poisson distribution, sampling distribution 62 185—186 438—441 446—448
Poisson distribution, truncated variates 503—504 506 607 521—522 523—524
Poisson distribution, variance-stabilizing transform for 492
Population-size estimation 229—256
Pratt, occurrence in probability 482—484; see also “Stochastic sequence” “Notation dimension-free”
PRE (proportional reduction in error) 387—389
PRECISION 313—315; see also “Variance”
Probit transformation 367
Propagation of errors see “Delta method”
Pseudo-Bayes estimators 408—410 419—423
Pseudo-Bayes estimators, asymptotic results for 410—416
Pseudo-Bayes estimators, small sample results for 416—419
PV (predictive value) 21—22
q see “Association measures “Cochran's “Yule's
Quasi-independence see “Independence”
Quasi-loglinear 210—212
Quasi-perfect mobility 206—208
Quasi-symmetry see “Symmetry”
R measuring association 381—385
Rates, adjusting for multiple variables 123 133—136
Rates, direct standardization 131—132
Rates, generic form 133—136
Rates, indirect standardization 132
Rates, standard mortality ratio 132 135
Rearranging data, breaking apart an table 207—209
Rearranging data, fitting by stages 107—108
Rearranging data, in table 15—16
Rearranging data, partitioning 105—107
Rearranging data, relabeling 102—105
Regularity conditions see “Birch's results for MLEs”
Relatives, high order 34
Risk see also “Cross-product ratio”
Risk for comparing Bayesian estimators 406—408
Risk, expected squared error 313—335
Risk, ratios, limiting 414—416
Risk, relative 15
Sampling design, constraints on models 36
Sampling design, stratified 29—30
Sampling distribution 62—64 185 212; “Hypergeometric “Multinomial “Poisson
Sampling distribution, effect on model selection 70—71
Sampling models, search for 315—317
Saturated models 9
Scoring categorical variables 360
Search procedures see “Stepwise model selection”
Sensitivity 20—21 48
Separability in many dimensions 212—216
Separability, dealing with 184—187
Separability, in tables 182—183
Separability, semi- 194
Simplicity in model building 312—315
Smoothed counts see “Cell values smoothing”
SMR (Standard Mortality Ratio) see “Rates standard
Sparse multinomials 410—413
Specificity 20—22 48
Square tables 281—309 320—324 339—342 347
Standard deviation and stochastic order 476—477
Standardization see “Fitting iterative classical “Rates”
Stationarity, of transition probabilities 261—267 269
Stepwise model selection 165—167
Stochastic order see also “Stochastic sequence”
Stochastic order of exponential variables 477—478
Stochastic order, Chernoff — Pratt theory for 479—484
Stochastic order, definition of 475—476
Stochastic order, methods for determining 476—477
Stochastic orders of moments 485—486
Stochastic sequence see also “Stochastic order”
Stochastic sequence, Chernoff — Pratt theory for 479—480
Stochastic sequence, convergence of 463—475
Stochastic sequence, determining order of 476—478
Stochastic sequence, formal structure of 480—482
Structural models, definition of 9—10
Structural models, uses of 11
Sufficient statistics 64—67
Sufficient statistics for three-dimensional models 66
Sufficient statistics, general derivation of 68—69
Sufficient statistics, minimal set of 66
Sufficient statistics, minimal set of, and direct estimates 78
Summary statistics see “Association measures of” “Chi “Frequency of “Rates” ”Sufficient
Suppressing parameters 332—337
Symmetry in association measures 376
Symmetry in square tables 258 282—286 299—306 347—348
Symmetry, exact 260
Symmetry, quasi- 286—292 303 296
Symmetry, relative 260
Synergism see “Worcester model”
t see “Tsehuprow's measure of association”
Taylor expansion 460—461
Testing see also “Interaction” “Partitioning
Testing and fitting 317—324
Testing, simplifying structure before 150
Testing, use of asymptotic variances for 498—499
Tetrahedron, of reference 50
Transformations, variance-stabilizing 366—371 491—492; “Arcsine “Logit “Freeman “Probit
Transition probabilities 262—269
Transition probabilities, single sequence 270—273
tree structures 360
triangular arrays see “Incomplete arrays”
Trinomial distribution, for risk of pseudo-Bayesian estimators 417—419
Tschuprow's measure of association, T 385—387
TSS (total sum of squares) 390
U as collection of u-terms 62
U as measure of association 389—392
u-terms see also “Log-linear model” “Linear
u-terms, definition 17 18
u-terms, generalized notation 61—62
u-terms, interpretation of 29—30 32—34
u-terms, relationship to cross-product ratios 17—18
u-terms, standardized estimates of 141 146 156
u-terms, variance of 494—497
Unsaturated models 9
V, Cramer's measure of association 386—387
Variance see also “Delta method”
Variance for capture-recapture problem 233 240—242 248—254
Variance for distance measures 518—519
Variance, asymptotic 498—499
Variance, asymptotic for confidence intervals 499—500
Variance, asymptotic for hypothesis testing 488—499
Variance, methods for computing 248—251
Variance, stabilizing transformations 491—492 500—501
Variation, measures of 389—393
Waiting times 467—468
Worcester model 111
WSS (within-group sum of squares) 390
Y see “Association” “Yule”
Yule's Q as measure of association 378—380 501
Yule's Y as measure of colligation 378—380
Zero entries see also “Configuration”
Zero entries, deviations in cells with 140
Zero entries, diagonals with, in square tables 296—299
Zero entries, invalidating model 72
Zero entries, random, defined 59 177
Zero entries, structural 31 59 93 177
Zero entries, unrepeated events in Markov chains 275—276
Ðåêëàìà