Авторизация
Поиск по указателям
Shiryaev A.N. — Probability
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Probability
Автор: Shiryaev A.N.
Аннотация: This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, ergodic theory, weak convergence of probability measures, stationary stochastic processes, and the Kalman-Bucy filter. Many examples are discussed in detail, and there are a large number of exercises. The book is accessible to advanced undergraduates and can be used as a text for self-study. This new edition contains substantial revisions and updated references. The reader will find a deeper study of topics such as the distance between probability measures, metrization of weak convergence, and contiguity of probability measures. Proofs for a number of some important results which were merely stated in the first edition have been added. The author included new material on the probability of large deviations, and on the central limit theorem for sums of dependent random variables.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: Second Edition
Год издания: 1995
Количество страниц: 644
Добавлена в каталог: 11.04.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Doubly stochastic 587
Duration of random walk 90
Dvoretzky’s inequality 508
Efficient estimator 71
Eigenvalue 130
Electric circuit 32
Elementary events 5 136
Elementary probability theory Chap.I
Elementary stochastic measure 424
Empty set 11 136
entropy 51
Equivalent measures 524
Ergodic sequence 407
Ergodic theorems 110 409 413
Ergodic theorems, maximal 410
Ergodic theorems, mean-square 438
Ergodic theory 409
Ergodic transformation 408
Ergodicity 118 409 581
Errors of observation 2 3
Errors, laws of 298
Errors, mean-square 43
Esseen’s inequality 296
Essential state 569
Essential supremum 261
Estimation 70 237 440 454
Estimator 42 70 237
Estimator for parameters 472 520 535
Estimator of spectral quantities 442
Estimator, Bartlett’s 444
Estimator, best 42 69
Estimator, consistent 71
Estimator, efficient 71
Estimator, linear 43
Estimator, optimal 70 237 303 454 461 463 469
Estimator, Parzen’s 445
Estimator, unbiased 71 440
Estimator, Zhurbenko’s 445
Events 5 10 136
Events, certain 11 136
Events, elementary 5
Events, impossible 11 136
Events, independent 28 29
Events, mutually exclusive 136
Events, symmetric 382
Existence of limits and stationary distributions 582ff.
Expectation 37 182
Expectation of function 55
Expectation of maximum 45
Expectation of random variable with respect to decomposition 76
Expectation of random variable with respect to decomposition, set of random variables 81
Expectation of sum 38
Expectation, inequalities for 192 193
Expectationof random variable with respect to decomposition, -algebra 212
Expected value 37
Exponential distribution 156
Exponential random variable 156 244 245
Extended random variable 178
Extension of a measure 150 163 249 427
Extrapolation 453
F-distribution 156
Fair game 480
Fatou’s Lemma 187 211
Favorable game 89 480
Feldman, J. 533
Feller, W. 597
Fermat, P.de 2
Fermi—Dirac 10
Filter 434 464
Filter, physically realizable 451
Filtering 453 464
Finer decomposition 80
Finite second moment 262
Finite-dimensional distribution function 246
Finitely additive 132 424
First arrival 129 574
First exist 123
First return 94 129 574
Fisher’s information 72
Forward equation 117
Foundations Chap.II 131
Fourier transform 276
frequencies 418
frequency 46
Frequency characteristic 434
Fubini’s Theorem 198
Fundamental inequalities (for martingales) 492
Fundamental sequence 253 258
Gamma distribution 156 343
Garcia, A. viii 410
Gauss Markov process 307
Gauss, C. F. 3
Gaussian density 66 156 161 236
Gaussian distribution 66 156 161 293
Gaussian measure 268
Gaussian random variables 234 243 298
Gaussian random vector 299
Gaussian sequence 306 413 439 441 466
Gaussian systems 297 305
Generalized Bayes theorem 231
Generalized distribution function 158
Generalized martingale 476
Generalized submartingale 476 523
Geometric distribution 155
Gnedenko, B.V. vii 510 542
Gram determinant 265
Gram — Schmidt process 266
Haar functions 271 482
Hajek — Feldman dichotomy 533
Hardy class 452
Harmonics 418
Hartman, P. 372
Hellinger integral 3
Helly’s theorem 319
Herglotz, G. 421
Hermite polynomials 268
Hewitt, E. 382
Hilbert space 262
Hilbert space, complex 275 416
Hilbert space, separable 267
Hilbert space, unitary 416
Hinchin see Khinchin
history 597—602
Hoelder inequality 193
Huygens, C. 2
Hydrology 420 421
Hypergeometric distribution 21
Hypotheses 27
I.o. 137
Impossible event 11 136
Impulse response 434
Increasing sequence 137
Increments independent 306
Increments uncorrelated 109 306
Indecomposable 580
Independence 27
Independence, linear 265 286
Independent algebras 28 29
Independent events 28 29
Independent functions 179
Independent increments 306
Independent random variables 36 77 81 179 380 513
Indicator 33 43
Inequalities, Bernstein 55
Inequalities, Berry — Esseen 333
Inequalities, Bessel 264
Inequalities, Burkholder 499
Inequalities, Cauchy — Bunyakovskii 38 192
Inequalities, Cauchy — Schwarz 38
Inequalities, Chebyshev 3 321
Inequalities, Davis 499
Inequalities, Dvoretzky 508
Inequalities, Hoelder 193
Inequalities, Jensen 192 233
Inequalities, Khinchin 347 498
Inequalities, Kolmogorov 496
Inequalities, Levy 400
Inequalities, Lyapunov 193
Inequalities, Marcinkiewicz — Zygmund 498
Inequalities, Markov 598
Inequalities, martingale 492
Inequalities, Minkowski 194
Inequalities, nonuniform 376
Inequalities, Ottaviani 507
Inequalities, Rao — Cramer 73
Inequalities, Schwarz 38
Inequalities, two-dimensional Chebyshev 55
Inessential state 569
Infinitely divisible 341
Infinitely many outcomes 131
information 72
Initial distribution 112 565
Innovation sequence 448
Insurance 558
Integral equation 208
Integral Lebesgue 180
Integral Lebesgue — Stieltjes 183
Integral Riemann 183 205
Integral Riemann — Stieltjes 205
Integral stochastic 423
Integral theorem 62
Integration by parts 206
Integration by substitution 211
Intensity 418
Interpolation 453
Intersection 11 136
Introducing probability measures 151
Invariant set 407 413
Inversion formulas 283 295
Ionescu Tulcea, C. T. vii 249
Ising model 23
Isometry 430
Iterated logarithm 395
Ito’s formula for Brownian motion 558
Jensen’s Inequality 192 233
Kakutani dichotomy 527 528
Kakutani — Hellinger distance 363
Kalman — Bucy filter 464
Khinchin, A.Ya 287 468
Kolmogorov — Chapman equation 116 248 566
Kolmogorov, A.N. vii 3 4 384 395 498 542
Kolmogorov, axioms 131
Kolmogorov, inequality 384
Kolmogorov’s theorems, convergence of series 384
Kolmogorov’s theorems, existence of process 246
Kolmogorov’s theorems, extension of measures 167
Kolmogorov’s theorems, iterated logarithm 395
Kolmogorov’s theorems, stationary sequences 453 455
Kolmogorov’s theorems, strong law of large numbers 366 389 391
Kolmogorov’s theorems, three-series theorem 387
Kolmogorov’s theorems, two-series theorem 386
Kolmogorov’s theorems, zero-or-one law 381
Krickeberg’s decomposition 507
Kronecker, delta 268
Kronecker, L. 390
Kullback information 368
Laplace, P.S. 2 55
Large deviation 69 402
Law of Large Numbers 45 49 325
Law of large numbers for Markov chains 122
Law of large numbers for square-integrable martingales 519
Law of large numbers, Poisson’s 599
Law of Large Numbers, strong 388
Law of the iterated logarithm 395
Least squares 3
Lebesgue — Stieltjes integral 197
Lebesgue — Stieltjes measure 158 205
Lebesgue, H., change of variable in 196
Lebesgue, H., decomposition 366 525
Lebesgue, H., derivative 366
Lebesgue, H., dominated convergence theorem 187
Lebesgue, H., integral 180 181
Lebesgue, H., measure 154 159
LeCam, L. 377
Levy — Khinchin representation 347
Levy — Khinchin theorem 344
Levy — Prokhorov metric 349
Levy, P., convergence theorem 510
Levy, P., distance 316
Levy, P., inequality 400
Likelihood ratio 110
lim inf, lim sup 137
Limit theorems 55
Limits under, expectation signs 180
Limits under, integral signs 180
Lindeberg condition 328
Lindeberg — Feller theorem 334
Linear manifold 264
Linearly independent 265
Liouville’s theorem 406
Lipschitz condition 512
Local limit theorem 55 56
Local martingale, submartingale 477
Locally absolutely continuous 524
Locally bounded variation 206
lognormal 240
Lottery 15 22
LOWER function 396
Lyapunov, A.M. 3 322
Lyapunov, condition 332
Lyapunov, inequality 193
Macmillan’s theorem 59
Marcinkiewicz — Zygmund inequality 498
Marcinkiewicz’s theorem 288
Markov chains 110 Chap.VIII 251 564
Markov chains, classification of 569 573
Markov chains, discrete 565
Markov chains, examples 113 587
Markov chains, finite 565
Markov chains, homogeneous 113 565
Markov, A.A. viii 3 321
Markov, depencence 564
Markov, process 248
Markov, property 112 127 564
Markov, time 476
Martingale 103 Chap.VII 474
Martingale transform 478
Martingale, convergence of 508
Martingale, generalized 476
Martingale, in gambling 480
Martingale, inequalities for 492
Martingale, local 477
Martingale, oscillations of 503
Martingale, reversed 484
Martingale, sets of convergence for 515
Martingale, square-integrable 482 493 538
Martingale, uniformly integrable 512
Martingale-difference 481 543 559
Mathematical expectation 37 76 see
Mathematical foundations Chap.II 131
Matrix covariance 235
Matrix of transition probabilities 112
Matrix transition 112
Matrix, doubly stochastic 587
Matrix, orthogonal 235 265
Matrix, stochastic 113
Maximal correlation coefficient 244
Maximal ergodic theorem 410
Maxwell — Boltzmann 10
Mean duration 90 489
Реклама