Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Shiryaev A.N. — Probability
Shiryaev A.N. — Probability



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Probability

Автор: Shiryaev A.N.

Аннотация:

This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, ergodic theory, weak convergence of probability measures, stationary stochastic processes, and the Kalman-Bucy filter. Many examples are discussed in detail, and there are a large number of exercises. The book is accessible to advanced undergraduates and can be used as a text for self-study. This new edition contains substantial revisions and updated references. The reader will find a deeper study of topics such as the distance between probability measures, metrization of weak convergence, and contiguity of probability measures. Proofs for a number of some important results which were merely stated in the first edition have been added. The author included new material on the probability of large deviations, and on the central limit theorem for sums of dependent random variables.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1995

Количество страниц: 644

Добавлена в каталог: 11.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Doubly stochastic      587
Duration of random walk      90
Dvoretzky’s inequality      508
Efficient estimator      71
Eigenvalue      130
Electric circuit      32
Elementary events      5 136
Elementary probability theory      Chap.I
Elementary stochastic measure      424
Empty set      11 136
entropy      51
Equivalent measures      524
Ergodic sequence      407
Ergodic theorems      110 409 413
Ergodic theorems, maximal      410
Ergodic theorems, mean-square      438
Ergodic theory      409
Ergodic transformation      408
Ergodicity      118 409 581
Errors of observation      2 3
Errors, laws of      298
Errors, mean-square      43
Esseen’s inequality      296
Essential state      569
Essential supremum      261
Estimation      70 237 440 454
Estimator      42 70 237
Estimator for parameters      472 520 535
Estimator of spectral quantities      442
Estimator, Bartlett’s      444
Estimator, best      42 69
Estimator, consistent      71
Estimator, efficient      71
Estimator, linear      43
Estimator, optimal      70 237 303 454 461 463 469
Estimator, Parzen’s      445
Estimator, unbiased      71 440
Estimator, Zhurbenko’s      445
Events      5 10 136
Events, certain      11 136
Events, elementary      5
Events, impossible      11 136
Events, independent      28 29
Events, mutually exclusive      136
Events, symmetric      382
Existence of limits and stationary distributions      582ff.
Expectation      37 182
Expectation of function      55
Expectation of maximum      45
Expectation of random variable with respect to decomposition      76
Expectation of random variable with respect to decomposition, set of random variables      81
Expectation of sum      38
Expectation, inequalities for      192 193
Expectationof random variable with respect to decomposition, $\sigma$-algebra      212
Expected value      37
Exponential distribution      156
Exponential random variable      156 244 245
Extended random variable      178
Extension of a measure      150 163 249 427
Extrapolation      453
F-distribution      156
Fair game      480
Fatou’s Lemma      187 211
Favorable game      89 480
Feldman, J.      533
Feller, W.      597
Fermat, P.de      2
Fermi—Dirac      10
Filter      434 464
Filter, physically realizable      451
Filtering      453 464
Finer decomposition      80
Finite second moment      262
Finite-dimensional distribution function      246
Finitely additive      132 424
First arrival      129 574
First exist      123
First return      94 129 574
Fisher’s information      72
Forward equation      117
Foundations      Chap.II 131
Fourier transform      276
frequencies      418
frequency      46
Frequency characteristic      434
Fubini’s Theorem      198
Fundamental inequalities (for martingales)      492
Fundamental sequence      253 258
Gamma distribution      156 343
Garcia, A.      viii 410
Gauss Markov process      307
Gauss, C. F.      3
Gaussian density      66 156 161 236
Gaussian distribution      66 156 161 293
Gaussian measure      268
Gaussian random variables      234 243 298
Gaussian random vector      299
Gaussian sequence      306 413 439 441 466
Gaussian systems      297 305
Generalized Bayes theorem      231
Generalized distribution function      158
Generalized martingale      476
Generalized submartingale      476 523
Geometric distribution      155
Gnedenko, B.V.      vii 510 542
Gram determinant      265
Gram — Schmidt process      266
Haar functions      271 482
Hajek — Feldman dichotomy      533
Hardy class      452
Harmonics      418
Hartman, P.      372
Hellinger integral      3
Helly’s theorem      319
Herglotz, G.      421
Hermite polynomials      268
Hewitt, E.      382
Hilbert space      262
Hilbert space, complex      275 416
Hilbert space, separable      267
Hilbert space, unitary      416
Hinchin      see Khinchin
history      597—602
Hoelder inequality      193
Huygens, C.      2
Hydrology      420 421
Hypergeometric distribution      21
Hypotheses      27
I.o.      137
Impossible event      11 136
Impulse response      434
Increasing sequence      137
Increments independent      306
Increments uncorrelated      109 306
Indecomposable      580
Independence      27
Independence, linear      265 286
Independent algebras      28 29
Independent events      28 29
Independent functions      179
Independent increments      306
Independent random variables      36 77 81 179 380 513
Indicator      33 43
Inequalities, Bernstein      55
Inequalities, Berry — Esseen      333
Inequalities, Bessel      264
Inequalities, Burkholder      499
Inequalities, Cauchy — Bunyakovskii      38 192
Inequalities, Cauchy — Schwarz      38
Inequalities, Chebyshev      3 321
Inequalities, Davis      499
Inequalities, Dvoretzky      508
Inequalities, Hoelder      193
Inequalities, Jensen      192 233
Inequalities, Khinchin      347 498
Inequalities, Kolmogorov      496
Inequalities, Levy      400
Inequalities, Lyapunov      193
Inequalities, Marcinkiewicz — Zygmund      498
Inequalities, Markov      598
Inequalities, martingale      492
Inequalities, Minkowski      194
Inequalities, nonuniform      376
Inequalities, Ottaviani      507
Inequalities, Rao — Cramer      73
Inequalities, Schwarz      38
Inequalities, two-dimensional Chebyshev      55
Inessential state      569
Infinitely divisible      341
Infinitely many outcomes      131
information      72
Initial distribution      112 565
Innovation sequence      448
Insurance      558
Integral equation      208
Integral Lebesgue      180
Integral Lebesgue — Stieltjes      183
Integral Riemann      183 205
Integral Riemann — Stieltjes      205
Integral stochastic      423
Integral theorem      62
Integration by parts      206
Integration by substitution      211
Intensity      418
Interpolation      453
Intersection      11 136
Introducing probability measures      151
Invariant set      407 413
Inversion formulas      283 295
Ionescu Tulcea, C. T.      vii 249
Ising model      23
Isometry      430
Iterated logarithm      395
Ito’s formula for Brownian motion      558
Jensen’s Inequality      192 233
Kakutani dichotomy      527 528
Kakutani — Hellinger distance      363
Kalman — Bucy filter      464
Khinchin, A.Ya      287 468
Kolmogorov — Chapman equation      116 248 566
Kolmogorov, A.N.      vii 3 4 384 395 498 542
Kolmogorov, axioms      131
Kolmogorov, inequality      384
Kolmogorov’s theorems, convergence of series      384
Kolmogorov’s theorems, existence of process      246
Kolmogorov’s theorems, extension of measures      167
Kolmogorov’s theorems, iterated logarithm      395
Kolmogorov’s theorems, stationary sequences      453 455
Kolmogorov’s theorems, strong law of large numbers      366 389 391
Kolmogorov’s theorems, three-series theorem      387
Kolmogorov’s theorems, two-series theorem      386
Kolmogorov’s theorems, zero-or-one law      381
Krickeberg’s decomposition      507
Kronecker, delta      268
Kronecker, L.      390
Kullback information      368
Laplace, P.S.      2 55
Large deviation      69 402
Law of Large Numbers      45 49 325
Law of large numbers for Markov chains      122
Law of large numbers for square-integrable martingales      519
Law of large numbers, Poisson’s      599
Law of Large Numbers, strong      388
Law of the iterated logarithm      395
Least squares      3
Lebesgue — Stieltjes integral      197
Lebesgue — Stieltjes measure      158 205
Lebesgue, H., change of variable in      196
Lebesgue, H., decomposition      366 525
Lebesgue, H., derivative      366
Lebesgue, H., dominated convergence theorem      187
Lebesgue, H., integral      180 181
Lebesgue, H., measure      154 159
LeCam, L.      377
Levy — Khinchin representation      347
Levy — Khinchin theorem      344
Levy — Prokhorov metric      349
Levy, P., convergence theorem      510
Levy, P., distance      316
Levy, P., inequality      400
Likelihood ratio      110
lim inf, lim sup      137
Limit theorems      55
Limits under, expectation signs      180
Limits under, integral signs      180
Lindeberg condition      328
Lindeberg — Feller theorem      334
Linear manifold      264
Linearly independent      265
Liouville’s theorem      406
Lipschitz condition      512
Local limit theorem      55 56
Local martingale, submartingale      477
Locally absolutely continuous      524
Locally bounded variation      206
lognormal      240
Lottery      15 22
LOWER function      396
Lyapunov, A.M.      3 322
Lyapunov, condition      332
Lyapunov, inequality      193
Macmillan’s theorem      59
Marcinkiewicz — Zygmund inequality      498
Marcinkiewicz’s theorem      288
Markov chains      110 Chap.VIII 251 564
Markov chains, classification of      569 573
Markov chains, discrete      565
Markov chains, examples      113 587
Markov chains, finite      565
Markov chains, homogeneous      113 565
Markov, A.A.      viii 3 321
Markov, depencence      564
Markov, process      248
Markov, property      112 127 564
Markov, time      476
Martingale      103 Chap.VII 474
Martingale transform      478
Martingale, convergence of      508
Martingale, generalized      476
Martingale, in gambling      480
Martingale, inequalities for      492
Martingale, local      477
Martingale, oscillations of      503
Martingale, reversed      484
Martingale, sets of convergence for      515
Martingale, square-integrable      482 493 538
Martingale, uniformly integrable      512
Martingale-difference      481 543 559
Mathematical expectation      37 76 see
Mathematical foundations      Chap.II 131
Matrix covariance      235
Matrix of transition probabilities      112
Matrix transition      112
Matrix, doubly stochastic      587
Matrix, orthogonal      235 265
Matrix, stochastic      113
Maximal correlation coefficient      244
Maximal ergodic theorem      410
Maxwell — Boltzmann      10
Mean duration      90 489
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте