Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Borwein J.M., Borwein P.B. — Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity
Borwein J.M., Borwein P.B. — Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity

Авторы: Borwein J.M., Borwein P.B.

Аннотация:

Presents new research revealing the interplay between classical analysis and modern computation and complexity theory. Two intimately interwoven threads run though the text: the arithmetic-geometric mean (AGM) iteration of Gauss, Lagrange, and Legendre and the calculation of pi[l.c. Greek letter]. These two threads are carried in three directions. The first leads to 19th century analysis, in particular, the transformation theory of elliptic integrals, which necessitates a brief discussion of such topics as elliptic integrals and functions, theta functions, and modular functions. The second takes the reader into the domain of analytic complexity — Just how intrinsically difficult is it to calculate algebraic functions, elementary functions and constants, and the familiar functions of mathematical physics? The answers are surprising, for the familiar methods are often far from optimal. The third direction leads through applications and ancillary material — particularly the rich interconnections between the function theory and the number theory. Included are Rogers-Ramanujan identities, algebraic series for pi[l.c. Greek letter], results on sums of two and four squares, the transcendence of pi[l.c. Greek letter] and e[ital.], and a discussion of Madelung's constant, lattice sums, and elliptic invariants. Exercises.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1987

Количество страниц: 414

Добавлена в каталог: 11.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Primitive binary form      141
Properly equivalent forms      141
q-binomial coefficients      76
q-binomial theorem      308
Quadratic computation      50
Quadratic modular equation      102
Quadratic reciprocity      86
Quadratically attractive transformation      277
Quintic multipliers      309
Quintuple-product identity      143 146 306
Rademacher (73)      56 71 85 90 286
Rainville (60)      179
Ramanathan (84)      81
Ramanujan      69 80 81 84 100 138 140 144 146 150 154 157 158 161 164 179 184 186 187 188 194 195 197 287 295 306 307 308 309 310 311 312 314 315 386
Ramanujan (14)      158 163 179 184 186 191 193 195 313
Ramanujan (62)      80 187 281 286
Ramanujan's $_1\Psi_1$ sum      308
Ramanujan's continued fraction identity      81
Ramanujan's invariants      70 179
Ramanujan's modular identity of order 3      287
Ramanujan's modular identity of order 5      310 312
Ramanujan's modular identity of order 7      312
Ramanujan's multiplier of second kind      157 159
Rankin (77)      116
Rational mean iteration      278
Recursion      201
Recursion formula for $\mathrm{r}_2(\mathrm{n})$, $\mathrm{r}_3(\mathrm{n})$      151 306 307
Reduced complexity methods      327
Reduced complexity methods, acceleration based on binary splitting      329
Reduced complexity methods, acceleration based on FFT      328
Reduced complexity methods, acceleration based on functional equations      327
Reitwiesner      341
Reversion of power series      208
Ribenboim (84)      345
Ribenboim (85)      95
Riemann      89
Riemann hypothesis      90
Rising factorial      178
Ritt (48)      226
Rogers      80
Rogers — Ramanujan identities      65 78 80
Rogers — Ramanujan identities, Bressoud's “easy proof”      78
Roth's theorem      363
Rouche      317 319
Rummer's indentity      179
Salamin      51 220 222
Salamin (76)      48 49 51
Sasaki      225
Sasaki and Kanada (82)      224 225
Schepler (50)      342
Schlafli      147 297
Schlafli's equation      147
Schloemilch      268 269
Schneider      348
Schoeneberg (76)      116 123 126
Schoeneberg (77)      247 269
Schoeneberg (82)      247 250
Schoenhage      211
Schoenhage and Strassen (71)      211
Schoenhage — Strassen multiplication      211
Schroeter      111 133
Schroeter's formula      111
schur      80
Schwab      250
Schwarz derivative      20 118
Selberg and Chowla (67)      296
Septic multipliers      309
Shanks, D. (82)      193 194
Shanks, D. and Wrench (62)      341
Shanks, W.      340
Shanks, W. (1853)      340
Simple continued fractions      372
Singmaster (85)      342
Singular invariants      141
Singular moduli      139
Singular value function      152
Singular value function of first kind      152
Singular value function of second kind      15
Singular value function, generalized      185
Singular values      26 49 139 140 141 172 173 296 297
Slater (66)      178 179
Solvability of quintic in modular terms      135
Solvable modular equations      310 311 313
Solvable numbers of type one      293
Solvable numbers of type two      293
Square-free invariants      295
Stickel (85)      222 224
Stieljes      264
Stirling numbers      305
Stirling's formula      90
Stolarsky (75)      233
Stolarsky (80)      237
Stolarsky's means      233 236 264
Stolarsky's means, identric      234 271
Stolarsky's means, logarithmic      234 271
Stolarsky's means, multidimensional      271
Stormer      345
Strassen      202 211
Strict mean      230
Strict multidimensional mean      266
Strong equivalence      241 243
Strong equivalence of iterations      252
Sums of squares of four squares      81
Sums of squares of others      71 287 292 293
Sums of squares of three squares      66 151 286
Sums of squares of two squares      82 285 290
Supremum norm      316
Sweeney (63)      336
Symmetric mean      231
Symmetric multidimensional mean      266
Symmetric polynomial      356
Tamura and Kanada (Pr)      211 342
Tan, computation of      227
Tannery and Molk (1893)      138 141
Theta functions      10 33 91 93
Theta functions, basic identities      64 67 68 70 71 73 74 111
Theta functions, finite transformation      86 87
Theta functions, general theta functions      52
Theta functions, one-dimensional heat equation      56
Theta functions, theta transformation formulae      38 44 54 87
Theta series      91
Todd (49)      345
Todd (75)      394
Todd (79)      7
Toom      211
Trace of mean      231
Transcendence of $\pi$      347 348 352 354
Transcendence of e      348 353 359
Transcendental functions      274
Transcendental number      351 352
Transformation of order p      119
Transformations of complete elliptic integrals of generalized integrals      179 180 185
Transformations of complete elliptic integrals, algebraic transformation for K      21
Transformations of complete elliptic integrals, higher order      102
Transformations of complete elliptic integrals, quadratic transformations for E and K      12 13
Transformations of complete elliptic integrals, quadratic transformations for K      36
Trefethen (84)      321 325
Triangular numbers      286 288
Tricomi (65)      262
Trilogarithm      381
Triple-product identity      62 65 66 72 306
Tschirnhaus transformation      136
Turing Machines      201
Ultimately monotone      235 241
van Ceulen      342
van der Poorten      379
Vieta      338 343
Vieta's formula      338 343
von Neumann      341
Wagon (85)      342
Waldo      342
Wallis      338 343
Wallis' formula      338 343
Walz (Pr)      330
Watson (29)      306
Watson (32)      140
Watson (33)      3 59 261
Watson (35)      286
Weber      168 295
Weber (08)      68 123 138 140 300
Weierstrass      29 30 141
Weierstrass (67)      348
Weierstrass function      27 30 1415
Whittaker and Watson (27)      10 26 27 29 55 59 72
Wills      323
Wimp (84)      7 242 260 269
Winograd (80)      206
Wrench (60)      342
Wright      80
Zeta function      87 88
Zeta function, functional equation for      89
Zeta function, relation to prime distribution      9
Zucker      100 141 296 297
Zucker (77)      140 297
Zucker (79)      100 154
Zucker (84)      75
Zucker (85)      386
Zucker and Robertson (76a)      293 294
Zucker and Robertson (76b)      293
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте