Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Borwein J.M., Borwein P.B. — Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity
Borwein J.M., Borwein P.B. — Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity

Авторы: Borwein J.M., Borwein P.B.

Аннотация:

Presents new research revealing the interplay between classical analysis and modern computation and complexity theory. Two intimately interwoven threads run though the text: the arithmetic-geometric mean (AGM) iteration of Gauss, Lagrange, and Legendre and the calculation of pi[l.c. Greek letter]. These two threads are carried in three directions. The first leads to 19th century analysis, in particular, the transformation theory of elliptic integrals, which necessitates a brief discussion of such topics as elliptic integrals and functions, theta functions, and modular functions. The second takes the reader into the domain of analytic complexity — Just how intrinsically difficult is it to calculate algebraic functions, elementary functions and constants, and the familiar functions of mathematical physics? The answers are surprising, for the familiar methods are often far from optimal. The third direction leads through applications and ancillary material — particularly the rich interconnections between the function theory and the number theory. Included are Rogers-Ramanujan identities, algebraic series for pi[l.c. Greek letter], results on sums of two and four squares, the transcendence of pi[l.c. Greek letter] and e[ital.], and a discussion of Madelung's constant, lattice sums, and elliptic invariants. Exercises.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1987

Количество страниц: 414

Добавлена в каталог: 11.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Generalized Legendre symbol      293
Generalized singular value function      185
Geometric series      91
Gini (38)      233
Gini's means      233 264
Glasser and Zucker (80)      68 290 293 303
Goldfield (85)      295
Gordon (61)      306 308
gosper      341
Gould and Mays (84)      263
Goursat (1881)      185 186
Gradshteyn and Ryzhik (80)      10
Grave      345
Graves-Morris      323
Greenhill (1892)      133 167
Gregory      339 348 381
Gregory's series      339
Guilloud      341
Halley's method      216
Hancock (09)      29
Hanna (28)      133
Hardy      80 187
Hardy (40)      141 314
Hardy and Wright      80
Hardy and Wright (60)      66 67 85 86 95 281 284 349 376 378
Hardy, Littlewood and Polya (59)      235 242 269
Height      371
hermite      135 264 348 359
Hermite and Stieltjes (05)      264
Heronian mean      237 269 270
Hexagonal lattice      292
Hexagonal sum      292
hilbert      348 353 354
Hilbert (1893)      348
Hirschhorn (85)      285
Holder's means      232 235 263 264
Holloway      188
Homogeneous mean      231
Homogeneous multidimensional mean      266
Horner's rule      204
Householder (70)      215 216
Hua (82)      294 349 375
Hughes (84)      175
Hurwitz zeta function      303 304
Hyberbolic arclemniscate      259
Hyberbolic function identities      74 75 100
Hypergeometric functions      332—334
Hypergeometric functions and series, Gaussian hypergeometric series      8
Hypergeometric functions and series, generalized      178
Hypergeometric functions and series, hypergeometric differential equation      11
Identric mean      234
Incomplete elliptic integrals      10
Incomplete elliptic integrals of first kind      10 58 60
Incomplete elliptic integrals of second kind      10
Incomplete elliptic integrals of third kind      10
Incomplete elliptic integrals, Eulers addition theorem      18
Inhomogeneous modular group, $\Gamma$      113 117
Interpolation problem      204
Invariance principle      245 246 260
Invariants, evaluating      293
Irrationality measures      362
Irrationality measures for $\exp(\pi)$      371
Irrationality measures for $\pi$      367 368 371
Irrationality measures for $\pi^2$      367
Irrationality measures for $\zeta(3)$      369 370
Irrationality measures for exp(1/v)      363 364 371 377
Irrationality measures for log      370 379
Irrationality of $\pi$      352
Irrationality of e      352
Isotone mean      231
Isotone multimimensional mean      266
Ivory (1796)      12 196
jacobi      5 10 20 22 28 38 52 65 68 73 74 85 106 143 180 252 261 284 301 306
Jacobi (1829)      36 106
Jacobi's differential equation      20 22
Jacobi's duplication formula for arcsl      260
Jacobi's formula for r4, n)      81
Jacobi's identity      35
Jacobi's imaginary quadratic transformation      73 180
Jacobi's triple-product identity      62 65 66 72 301 306
Jacobi's triple-product identity, corollaries      64 65
Jacobi's triple-product identity, finite form      77
Jacobi's triple-product identity, first proof      62
Jacobian elliptic function      29
Jacobian elliptic function, dn      29
Jacobian elliptic function, en      29
Jacobian elliptic function, half angle formula for en      262
Jacobian elliptic function, half angle formula for sn      30
Jacobian elliptic function, sn      29 57
Jones      339
Joubert      142
Kaltofen and Yui (84)      133
Kanada      224 225 341
Karatsuba      211
Keith (86)      342
Khinchin's theorem      362 371
King (24)      16 18 44 52 59 60
Klein      116
Klein (1897)      349
Klein (79)      7
Klein and Fricke (1892)      116 126
Klein's absolute invariant      115 179
Knuth (81)      203 211 212 218
kronecker      135 293 296 297
Kronecker symbol      293
Kummer      179
Kung and Traub (78)      216
Lagrange      3 82 321 375
Lagrange interpolation formula      321
Laguerre      99
Lambert      99 348
Lambert series      91 99 281 286 288 300
Landau      268 269
Landau (1899)      94
Landau (58)      86 294
Landen      381
Landen transform      17 57 59
Landen transform in terms of elliptic functions      58
Landen transform in terms of theta functions      57
Lang (66)      349
Lang (73)      29 30 116 123
Laplace transform      39
Lattice sums, chemical      288 290
Le Petit Archimede (80)      342
Leach and Scholander (78)      237
legendre      3 10 23 26 152 153 154 178 348
Legendre's relation      24 26 27 49 152 153
Legendre's relation, generalized      178
Legendre's relation, theta function proof      43
Lehmer      264 265
Lehmer (38)      345
Lehmer (71)      247 263
Lehmer (85)      386
Lehmer's means      232 235 263
Lehner (66)      116
Leibniz      339 340
Lemniscate sine      5 28
Length      358
Lengths and measures      358
LeVeque (77)      294 349
Lewin (81)      382 386
Lindemann      274 348
Lindemann (1882)      348
Lindemann's theorem      348 357
Liouville      10 36 116 348
Liouville numbers      351 352
Liouville's function      100
Liouville's principle      54
Liouville's summation principle      36
Lipson (81)      216
Logarithm, approximations to      325 327 328 330
Logarithm, bit complexity      219 222
Logarithm, calculation      220 221 222 223
Logarithm, complex      222
Logarithm, operational complexity      219 222
Logarithm, series for      320
Logarithm, theta function algorithms for      224
Logarithmic mean      234 248 261
Lorenz      287 289
Lucas numbers      95 97 100 287
Machin      339 341 344
Machin's formula      339 340 341 344
MacMahon      67
Madelung's constant      288 292 301
Mahler (31)      359
Mahler (53)      368
Mahler (67)      349 368
Matrix logarithm      224 225 226
Mean      230 231
Mean iterations      243
Mean iterations, algebraic      273—280
Mean iterations, Archimedean      246
Mean iterations, arithmetic-harmonic      4
Mean iterations, Carlson's      257
Mean iterations, Gaussian      246
Mean iterations, harmonic-geometric      4
Mean iterations, Lehmer's      265
Mean iterations, multidimensional      267
Mean iterations, pathology      253
Mean iterations, rates of convergence      251 267 272
Mean iterations, Schlomilch's      268
Mean iterations, Tricomi's      265
Mean, discontinuous      230 238
Mean, equivalent mean      231
Mean, homogeneous      231 266
Mean, isotone      231 266
Mean, strict      230 266
Mean, symmetric      231 266
Mean, trace of      231
Means, classes, Gini      233 264
Means, classes, Heronian      237 269 270
Means, classes, Holder      232 235 263 264
Means, classes, identric      234
Means, classes, Lehmer      232 235 263
Means, classes, logarithmic      234 248 261
Means, classes, Neo-Pythagorean      255
Means, classes, series expansions of      263—266
Means, classes, Stolarsky      233 236 264
Measure of polynomial      359
Meil (83)      250
Meinardus      321
Meinardus conjecture      321
Mellin transform      87 90 289 290 301
Metropolis      341
Mignotte (74)      368
Modular equations      103 315
Modular equations for $\mathrm{K}_{1/6}$ and $\mathrm{K}_{1/4}$      315
Modular equations, cubic      104 107 109 110
Modular equations, degree of      125
Modular equations, degree of, of degree 15      314
Modular equations, degree of, of degree 23      133
Modular equations, elliptic      112
Modular equations, endecadic      106
Modular equations, endecadic for $\lambda$ of order p      121 140
Modular equations, endecadic for j      123
Modular equations, endecadic, octicity of u-v form      126 134
Modular equations, endecadic, quadratic      109
Modular equations, endecadic, quintic      105 107 109 135 136 297 313
Modular equations, endecadic, septic      106 112 313
Modular equations, endecadic, solvable      310 311 313
Modular equations, endecadic, u-v form      126 127—132 134
Modular functions, $\Gamma$-modular functions      114 118
Modular functions, $\lambda$-modular function      114 118 121 133 134
Modular functions, $\lambda$-modular group      113 117
Modular transformations      103
Modulus      8
Moebius      100
Mollerup      89
Mordell      187
Mordell (16)      286
Multidimensional Archimedean iteration      267 269
Multidimensional Gaussian iteration      267 268 270
Multidimensional invariance principle      269
Multidimensional mean      266 269
Multiplier      103 105 106
Multiplier of order p      136
Multiplier of order p, cubic      138 144 149
Multiplier of order p, cubic, of degree 13      138
Multiplier of order p, cubic, of degree 17      138
Multiplier of order p, quintic      138 309
Multiplier of order p, septic      138 311
N-monotone      291
Nemeth (77)      321
Neo-Pythagorean means      255
Newman (79)      321
Newman (82)      7 222 223
Newman (85)      7
Newman, M., and Shanks (84)      193
Newton      123 207 208 212 339 343 356
Newton's identities      356
Newton's method      212 214 215 216 217 218 223
Niven (56)      347 348 349
Nome      41
Non-prime invariants      295
Nth convergent      372
Nyvoll (78)      196
Operational complexity      201
Order of convergence      2
Oxtoby (80)      352
pade      320
Pade approximant      319 320 323 325 327 331 359
Partially comparable iterates      247
Partition congruences      84 308
Partition function      67 307
Partitions of natural number      67
Pell's equation      376
Pendulum, period of      8
Pentagonal number      66 67
Perimeter of ellipse      8 168 195—197
Periodic continued fraction      375
Pfaff      250
Phillips (81)      252
Pi, AGM identities      48 52 169 197
Pi, algorithms      46 48 170 171 (175) 222 310 315 335
Pi, approximations to      168 191 192 195 197
Pi, complexity of calculating      219
Pi, computation of      337—342
Pi, cubic iteration      171 174
Pi, general iteration      169
Pi, irrationality      348 352
Pi, irrationality measure      367
Pi, legislation on      342
Pi, mnemonic for      342
Pi, normality of      342
Pi, quadratic algorithm for $\exp(\pi)$      50
Pi, quadratic iteration      170 174
Pi, quartic iteration      170 174
Pi, quintic iteration      175 313
Pi, septic iteration      171 174 175
Pi, series for $1/\pi$      181—190
Pi, transcendence of      347 348 352 354
Picard      119
Picard's theorem      119
Piecewise monotone      234
Pochhammer symbol      178
Poincare      116
poisson      38
Poisson summation formula      36 89
Polya      86
Prime number theorem      378
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте