Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Mukamel S. — Principles of Nonlinear Optical Spectroscopy
Mukamel S. — Principles of Nonlinear Optical Spectroscopy



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Principles of Nonlinear Optical Spectroscopy

Àâòîð: Mukamel S.

Àííîòàöèÿ:

This textbook presents a systematic and unifying viewpoint for a wide class of nonlinear spectroscopic techniques in time domain and frequency domain. It is directed towards active researchers in physics, optics, chemistry, and materials science, as well as graduate students who enter this complex and rapidly developing field.
Nonlinear optical interactions of laser fields with matter provide powerful spectroscopic tools for the understanding of microscopic interactions and dynamic processes. One of the major obstacles facing researchers in this field, however, is the flood of experimental techniques and terminologies, which create a serious language barrier. The general microscopic correlation function approach to the nonlinear optical response developed in this book is essential for understanding the relationships among different techniques and a comparison of their information content, the design of new measurements, and for a systematic comparison of the optical response of different systems such as dyes in solutions, atoms and molecules in the gas phase, liquids, molecular aggregates and superlatives, and semiconductor nanostructures. The approach is based on formulating the nonlinear response by representing the state of matter by the density matrix and following its evolution on Liouville space. Current active research areas such as femtosecond time-domain techniques, semi-classical and wave-packet dynamics, pulse shaping, pulse locking, exciton confinement, and the interplay of electronic, nuclear and field coherence are emphasized.
The material has been developed from the author's highly successful interdisciplinary course at the University of Rochester attended byscience and engineering graduate students.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1995

Êîëè÷åñòâî ñòðàíèö: 576

Äîáàâëåíà â êàòàëîã: 20.03.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Response functions, linear      94 150
Response functions, nonlinear      See Nonlinear response functions
Response functions, nth-order      445
Response functions, second-order      150 170—171
Response functions, second-order, cumulant expansion      213
Response functions, second-order, Liouville space coupling for      156f
Response functions, semiclassical expansion      211
Response functions, single-particle, macroscopic susceptibilities and      127
Response functions, small particle, correlation function expressions for      111—118 115f
Response functions, third-order      150 203 210
Response functions, third-order, cumulant expansion      213
Response functions, third-order, Hilbert vs. Liouville space representation of      196—199 197f
Response functions, third-order, of two-level model      209
Response functions, third-order, wavevector dependence of      112
Rhodamine, fluorescence excitation spectrum      194 195f
Rhodopsin, isomerization dynamics      370f
Rigid rotor      17
Roentgen current      90
Rotating wave approximation (RWA)      296 366 375 411 418 446 495
Rotating wave approximation (RWA) for coherent anti-Stokes Raman spectroscopy      281 285
Rotating wave approximation (RWA), Bloch equations and      169 181 183
Rotating wave approximation (RWA), multilevel manifold with relaxation and      158—159
Rotating wave approximation (RWA), nonlinear response in momentum space and      126—127
Rotating wave approximation (RWA), physical $\delta$ function pulse and      129—130
Rotor (curl)      104
RWA      See Rotating wave approximation (RWA)
Scalar function      104
Scalar product      56 91
Scalar product in Hilbert space vs. Liouville space      58t
Scalar product of polarization      87
Scalar product of two states      15
Scalar product of two vectors      40
Scalar product, definition of      42
Scalar product, rules, for linear vector spaces      41—42
Scattered field, in spontaneous light emission spectroscopy      265
Scattering matrix, expression for two-exciton Green function      518—519
Schroedinger equation      23 35 51 54 57
Schroedinger equation for wavefunction      144
Schroedinger equation, time-independent (stationary)      15
Schroedinger picture      27 29—30 63 140 484
Schroedinger picture, cumulant expansion and      212
Schroedinger picture, time-dependent density operator in      483
Schwartz inequality      40t 41 48
Second harmonic generation signal      173
Second-order nonlinear processes      116
Self energy operator      36 68
Self interaction term $(H_{self})$      88—89
Self-action      103
Self-adjointed operators (Hermitian operators)      21 117
Self-focusing      174
Semiclassical simulations approximations      188
Semiclassical simulations approximations for anharmonic systems      357
Semiclassical simulations, inhomogeneous cumulant expansion and      239—244 243f
Semiclassical simulations, motivation for using      188
Sequential pump-probe spectroscopy      322 326—328 327f 336
Sine function, phase matching condition and      98f
Single-frequency techniques, examples of      173—175 174f
SLE spectroscopy      See Spontaneous light emission spectroscopy (SLE)
Slow modulation limit      222 306
Small particle response functions, correlation function expressions for      111—118 115f
Smoluchowski equation      233 357 362
Snapshot doorway wavepackets      379
Snapshot spectrum      372 377—382 450
Snapshot spectrum, off-resonant      455—456
Snapshot window wavepackets      379
Sodium, energy level scheme, $\chi^{(3)}$      173 174f
Spatial dispersion      112
spatial resolution      13
Spectral density      214 219
Spectral density, symmetries of      214—217
Spectral diffusion      203 224 306 309—310 333
Spectral diffusion and vibrational relaxation, with spontaneous light emission spectroscopy      286—287
Spectral diffusion, hole-burning spectroscopy and      385—389 387f 389f
Spectral distribution function      435
Spectral line broadening      169 187 224.See
Spin decoupling      295
Spin-Boson Hamiltonian      See Brownian oscillator model
Spontaneous emission      13
Spontaneous light emission spectroscopy (SLE)      4f 261 265—271 266f 268f
Spontaneous light emission spectroscopy (SLE) with spectral diffusion and vibrational relaxation      286—287
Spontaneous light emission spectroscopy (SLE), electromagnetic field decomposition      265
Spontaneous light emission spectroscopy (SLE), fluorescence component      261—262 271—279 272f—279f
Spontaneous light emission spectroscopy (SLE), frequency domain      267—271
Spontaneous light emission spectroscopy (SLE), incoming field      265
Spontaneous light emission spectroscopy (SLE), Liouville space pathways      267 268f
Spontaneous light emission spectroscopy (SLE), phase-locked      295 310—313 340 341
Spontaneous light emission spectroscopy (SLE), Raman component      261—262 262f 263f 271—279 272f—279f
Spontaneous light emission spectroscopy (SLE), scattered field      265
Spontaneous light emission spectroscopy (SLE), using phase-locked pulses      310—313
Spontaneous Raman spectroscopy      133
Spontaneous Raman spectroscopy, absorption of quantum field      262—264 263f
Spontaneous Raman spectroscopy, coherent analogues of      See Coherent anti-Stokes Raman spectroscopy (CARS); Coherent Stokes Raman spectroscopy (CSRS)
Spontaneous Raman spectroscopy, excitation profile      283
Spontaneous Raman spectroscopy, frequency-domain      417—429
State of system      See Ket
State vector      75
Static polarization structure factor      253 254
Stationary absorption lineshape      183
Statistical mixture      See Mixed states
Steady-state solution      183
Stimulated photon echo (SPE)      295 303
Stimulated Raman      305
Stochastic Gaussian Markov modulation, of electronic energy gap      225
Stochastic lineshape function      225—226 226f
Stochastic process      225f
Stokes shift      250—252 308 308f 333
Stokes shift in aggregates      503
Stokes shift, absence in Stochastic models      226
Stokes shift, parameter      237
Stokes shift, time-dependent      234 333 369 377
Stokes shift, time-dependent, in hole-burning and fluorescence line narrowing      372
Superlattices, periodic structure in k space, optical susceptibilities of      496—498
Superoperators      54—55 57
Superposition, of two states      15
Superradiance      479
Susceptibilities      125
System density operator      177
System operator dynamics      49
System timescales, distribution of      188
Taylor series      17 18 30 212 222 414
Taylor series, expansion      115—116 246
Taylor series, transition moment in      210
Temperature, Wigner representation and      73—74
Temporal convolution      382
Tensor, dipole-dipole      463
Tensor, rank of      445
Tetradic matrix (superoperator)      54—55
Tetradic notation, and Liouville space      53—58 58f
Thermal bath      130 132 143 149
Thermal population      145
Third harmonic generation      4 173
Third-harmonic hyperpolarizability      173 174f
Thomas — Reiche — Kuhn (oscillator-strength) sum rule      165
Three-pulse echo      308
Three-pulse phase-locked pump-probe absorption      338—339
Three-wave mixing      4
Time evolution operator      25—26 200
Time evolution operator in Hilbert space vs. Liouville space      58f
Time evolution operator in interaction picture, Magnus expansion of      26—31
Time evolution operator in Liouville space      59—61
Time evolution operator with time-independent Hamiltonians      15—22
Time evolution operator, definition of      16—17
Time evolution operator, tetradic      60
Time ordering      112
Time ordering in Hilbert space      23f 23—25 24f
Time ordering in Liouville space      61 62
Time ordering, partial control of      322 324 324f 325f 326
Time variables for nonlinear response functions      114—115 115f
Time variables in time-ordered expansion      23f
Time-dependent friction      228
Time-dependent perturbation theory      136—137
Time-dependent phase      192
Time-dependent transition dipole      192
Time-domain spectroscopy      187 321 322
Time-domain spectroscopy, analogue, of degenerate four-wave mixing and      510—512 511f 512f
Time-domain spectroscopy, ideal      129
Time-domain spectroscopy, impulsive coherent anti-Stokes Raman      420 421f
Time-domain spectroscopy, Liouville space pathways in      118—120
Time-domain spectroscopy, measurements      117
Time-domain spectroscopy, Raman techniques, dynamic approach to coherent Raman scattering and      414—422 421f
Time-domain spectroscopy, response function      144
Time-domain spectroscopy, techniques      13
Time-domain spectroscopy, techniques, vs. frequency-domain techniques      5f—7f 5—7
Time-domain spectroscopy, us. frequency domain techniques, for nonlinear response functions      128—131
Time-independent effective Liouville operator      181
Time-ordered exponential      191
Time-ordered exponential operator, cumulant expansion applied to      See Magnus expansion
Time-ordering in Liouville space      132—133
Time-ordering, Liouville space pathways and      132—133
Total charge density      83
Total detected intensity      99
Total polarization field      88
Trace      49
Trace of $\rho^2$      49f
Trace of commutators      46
Trace of matrix      42
Trace, properties of      46
Transient dichroism, of iodine in n-hexane      454f
Transient experiments      12
Transient grating      4 322 479
Transient grating with heterodyne detection, vibrational contribution to      450—451
Transient grating with heterodyne detection, wavepacket representation of      408
Transient grating, coherent Raman scattering and      414
Transient grating, phase-locked      324 324f 325f 326
Transient grating, third-order nonlinearities and      4
Transient grating, time-domain analogue of degenerate four-wave mixing and      510—512 511f 512f
Transition frequency (energy)      144 243
Transition frequency (energy), distribution of      188
Transition frequency (energy), fast modulation of      188
Transition frequency (energy), shifts, electric-field-induced      292f
Transition frequency (energy), static distribution of      188
Transmission      144
Transverse delta function      81
Transverse electric field      495
Transverse Maxwell field      111
Transverse polarization      86
Transverse radiation field      111
Transverse relaxation time      180
Transverse vector fields      104—105
Triple Fourier transformation      246
Two-electronic level systems      210—212 296
Two-electronic level systems, absorption and emission lineshapes      219—220 250—252
Two-electronic level systems, interacting with strong monochromatic field      181
Two-electronic level systems, optical response, Condon approximation for      210—212
Two-electronic level systems, resonant, non-time-ordered four-wave mixing      323—324
Two-electronic level systems, scheme, for spontaneous light emission      266 266f
Two-exciton resonances, and enhanced nonlinear susceptibilities in molecular aggregates      498—504 503f—506f 506—507
Two-exciton scattering matrix      493 496
Two-exciton variables, for Green function, solution, factorized approximations for      489—490
Two-level model absorption lineshape      193
Two-photon absorption, nonlinear      502 503f 504 505f
Two-photon resonances      280 416
Two-pulse photon echo (PE)      295
Two-state jump model      226
Two-time correlation function of polarizability      417
Two-time correlation function, of electronic energy gap      214
Ultracold molecules, in supersonic beams      290 291f
Ultrafast pulses, interferometric autocorrelation measurement      6f
Ultrafast pulses, sources, development of      5 5f
Ultrafast pulses, time-resolution, development of      6f
Unit operator, in Hilbert space vs. Liouville space      58t
Unit operator, in Wigner representation      72—73
Unitary operator      22 46
Urbach tail      194
Vacuum state      265
Van der Waals interaction      87
Vector fields      79
Vector fields, longitudinal      104—105
Vector fields, transverse      104—105
Vector model      10
Vector potential      81
Vector potential operator      80
Vector, bra      56
Vibrational coherence      294 455
Vibrational contribution, to heterodyne-detected transient grating      450—451
Vibrational dephasing      169—170 225
Vibrational dephasing, homogeneous      419—420
Vibrational dephasing, processes      306 454
Vibrational dephasing, rates      283
Vibrational dephasing, timescale      422
Vibrational frequency      305
Vibrational quantum beats      330
Vibrational relaxation, and spectral diffusion, with spontaneous light emission spectroscopy      286—287
Vibrational spectroscopy, N-dimensional      414
Vibronic eigenstate representation for nuclear motions      369
Vibronic state representation      365—366
Voigt profile      223—224 293 304 338
Wannier excitons      514
Wave-mixing techniques, off-resonant conditions      10
Wavefunction, formulation of nonlinear response, vs. density-operator formulation      136—138
Wavepacket analysis for overdamped Brownian oscillator      385—391 389f 391f—393f
Wavepacket analysis of pump-probe spectra in three-electronic-level system      393—406 394f 398f—402f
Wavepacket analysis, doorway-window picture and      See Doorway-window wavepacket representation
Wavepacket analysis, of nonimpulsive measurements      369 370f—372f 371—373
Wavepacket analysissnapshot spectrum and related limiting cases      372 377—385
Wavepackets doorway      See Doorway wavepackets
Wavepackets in bound molecular system      371f
Wavepackets, dynamics in Liouville space      345—346
Wavepackets, semiclassical      322
Wavepackets, window      See Window wavepackets
Wavevector      125
Wavevector, dependence, of response functions      112
Wavevector, selection (phase matching)      12
Wavevector-dependent dielectric function      95
Wick's theorem      218
Wiener — Khinchin theorem      241 255—256
Wigner phase space representation      369 380 423
Wigner phase space representation in snapshot limit      396—397 400f 402f
Wigner phase space representation of density operator      72 132
Wigner phase space representation, canonical quantum density operator      73
Wigner phase space representation, classical Liouville equation and      68—75
Wigner phase space representation, exciton transport in phase space and      508—510
Wigner phase space representation, for eigenstates of harmonic oscillator      74f
Wigner phase space representation, Franck — Condon principle and      403—404
Wigner phase space representation, path integral representation and      345—346
Wigner phase space representation, phase averaging and      350
Wigner phase space representation, quantum harmonic oscillator, Hamiltonian for      73
Wigner phase space representation, response functions and      257
Wigner phase space representation, significance of      74—75
Wigner phase space representation, temperature and      73—74
Wigner phase space representation, unit operator in      72—73
Wigner transform      73 75
Wigner — Jordan transformation      514
Wigner — Weiskopf model      36—37 37f
Window wavepackets      369 372.See
Window wavepackets for off-resonant birefringence and dichroism      455
Window wavepackets in snapshot limit      379 396—398
Window wavepackets, amplitude      397
Window wavepackets, ground-state      362
Window wavepackets, second-rank tensor      452
Zero background      99
Zero order Green function      34
Zero point motion      188
Zero vector      40 41
Zero-order field      130
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå