Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Mukamel S. — Principles of Nonlinear Optical Spectroscopy
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Principles of Nonlinear Optical Spectroscopy
Àâòîð: Mukamel S.
Àííîòàöèÿ: This textbook presents a systematic and unifying viewpoint for a wide class of nonlinear spectroscopic techniques in time domain and frequency domain. It is directed towards active researchers in physics, optics, chemistry, and materials science, as well as graduate students who enter this complex and rapidly developing field.
Nonlinear optical interactions of laser fields with matter provide powerful spectroscopic tools for the understanding of microscopic interactions and dynamic processes. One of the major obstacles facing researchers in this field, however, is the flood of experimental techniques and terminologies, which create a serious language barrier. The general microscopic correlation function approach to the nonlinear optical response developed in this book is essential for understanding the relationships among different techniques and a comparison of their information content, the design of new measurements, and for a systematic comparison of the optical response of different systems such as dyes in solutions, atoms and molecules in the gas phase, liquids, molecular aggregates and superlatives, and semiconductor nanostructures. The approach is based on formulating the nonlinear response by representing the state of matter by the density matrix and following its evolution on Liouville space. Current active research areas such as femtosecond time-domain techniques, semi-classical and wave-packet dynamics, pulse shaping, pulse locking, exciton confinement, and the interplay of electronic, nuclear and field coherence are emphasized.
The material has been developed from the author's highly successful interdisciplinary course at the University of Rochester attended byscience and engineering graduate students.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1995
Êîëè÷åñòâî ñòðàíèö: 576
Äîáàâëåíà â êàòàëîã: 20.03.2008
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Liouville equation, Wigner transform and 75
Liouville space 13 42 117
Liouville space and tetradic notation 53—58 58t
Liouville space pathways 112 211 223 282 323 340 501
Liouville space pathways for nonlinear response functions 149 394f 394—395
Liouville space pathways for nonlinear response functions, generation of 347—349
Liouville space pathways for nonlinear response functions, rotational contribution to 446 448
Liouville space pathways for spontaneous light emission processes 267 268f
Liouville space pathways for three-pulse time-domain four-wave mixing 296 296f
Liouville space pathways for two electronic level system 197
Liouville space pathways in frequency domain 120—122
Liouville space pathways in frequency domain, linear response 121
Liouville space pathways in frequency domain, second-order response 121
Liouville space pathways in frequency domain, third-order response 122
Liouville space pathways in time domain 118—120
Liouville space pathways in time domain, linear response 118
Liouville space pathways in time domain, second-order response 119
Liouville space pathways in time domain, third-order response 119—120
Liouville space pathways, coherences and 134
Liouville space pathways, Condon approximation and 209
Liouville space pathways, factorization 187
Liouville space pathways, graphic representations 144
Liouville space pathways, nonlinear response in momentum (k) space 125 126
Liouville space pathways, optical response functions and 117 130
Liouville space pathways, phase-locked for spontaneous light emission 311—312
Liouville space pathways, populations and 134
Liouville space pathways, reduced dynamics of 356—357
Liouville space pathways, third-order response function and 153
Liouville space pathways, time-ordering and 132—133
Liouville space vs. Hilbert space 58t
Liouville space wavepackets, procedure for 192
Liouville space wavepackets, reduced equations of motion 357—359
Liouville space wavepackets, semiclassical picture, of nonlinear response function for off-resonant Raman scattering spectroscopy 413
Liouville space, advantages of 76 130—135
Liouville space, analogues 62 66 115
Liouville space, classical Franck — Condon principle and 405—406
Liouville space, commutator 265
Liouville space, completeness condition 56
Liouville space, coupling, for linear response function 158
Liouville space, coupling, for second-order response function 156f
Liouville space, coupling, for third-order response function 152f—153f
Liouville space, coupling, for two electronic level system 197
Liouville space, definition of 54—55 57
Liouville space, density operator in 76
Liouville space, density operator in, basic definitions for 45—48 49t
Liouville space, density operator in, reduced system 49—50
Liouville space, density operator in, time evolution of 50—53 52f
Liouville space, dephasing processes 134—135
Liouville space, description of 75
Liouville space, Dyson equation 65
Liouville space, expression, second-order response 121
Liouville space, expression, third-order response 122
Liouville space, formulation of 131
Liouville space, frequencies 384
Liouville space, Green functions 114 196 350
Liouville space, Green functions, dephasing and 144 148 149
Liouville space, Green functions, eigenstate, representation 147
Liouville space, Green functions, formulation of 64—67
Liouville space, Green functions, in frequency domain 121
Liouville space, Green functions, response functions and 117 143
Liouville space, Hamiltonian and 245
Liouville space, hermiticity in 66—67
Liouville space, Hilbert space Green functions and 65
Liouville space, intuitive picture and semiclassical approximations 131—132
Liouville space, linear response in 147—149
Liouville space, Magnus expansion in 63—64
Liouville space, matrix elements 57 66 149 177
Liouville space, merits of working in 117
Liouville space, notation 113 117 170.See
Liouville space, operators 113—114 171 194 255 442
Liouville space, operators, dipole 118 148
Liouville space, operators, effective 68
Liouville space, operators, partitioning of 61 68
Liouville space, operators, tetradic notation and 54—55 57
Liouville space, operators, time-independent 59 184
Liouville space, operators, zero-order Hamiltonian and 177
Liouville space, outer product of vectors 57
Liouville space, path integral in 349
Liouville space, projection operators in 67—68
Liouville space, propagator 59
Liouville space, pure/mixed states and 45—48 49f
Liouville space, reduced density operator and 49—50
Liouville space, reduced descriptions and thermal averaging 132
Liouville space, role of dephasing processes 134—135
Liouville space, semiclassical simulations of nonlinear response in 199—201
Liouville space, terminology 53
Liouville space, tetradic Green function in 446
Liouville space, third-order response function representation, vs. Hilbert space representation 196—199 197f
Liouville space, time evolution of density operator and 50—53
Liouville space, time evolution operator in 59—61 67
Liouville space, time-ordering 132—133
Liouville space, vector 71 170
Liouville space, vector, representing Hilbert space operator 55
Liouville space, wavepacket dynamics in 345—346
Liouville space-generating function (LGF) 356 358
Liouville space-generating function (LGF) for linear response 346
Liouville space-generating function (LGF), eigenstate expansion of 364
Liouville space-generating function (LGF), normalized 352
Liouville space-generating function (LGF), semiclassical equations of motion 351—355
Liouville space-generating function (LGF), time evolution of 355
Liouville — Maxwell equations See Maxwell — Liouville equations
Liouville — Von Neumann equation 51
Liouville's theorem 70
Local field expressions, for optical susceptibilities of homogeneous systems 475—477
Local intermolecular modes 217
Local nonlinearities 498
Local oscillator 99 324
Local-field approximation (LFA) 461—462 496 504
Local-field approximation (LFA) in k space 466—469
Local-field approximation (LFA), Green function solution, factorized approximations for 488—489
Local-field approximation (LFA), Heisenberg picture and 483
Local-field approximation (LFA), local-field and cascading corrections 462—466
Local-field approximation (LFA), many-body effects and 479
Local-field approximation (LFA), microscopic derivation of 469—475 474f
Local-field approximation (LFA), nonlinear optical response in condensed phases and 479
Local-field approximation (LFA), optical response beyond, anharmonic oscillator real space expression for 491—493
Long wavelength approximation (dipole approximation) 112 113
Longitudinal vector fields 104—105
Lorentz expression, for local field 468
Lorentzian factors, classical Franck — Condon principle and 404
Lorentzian homogeneous broadening 338
Lorentzian lineshape 151 173 183 187 194 223 232 235f 283 292 293 335 510
Lorentzian lineshape vs. Gaussian profile 224
Macroscopic interference, vs. microscopic interference 340
Magnetic displacement field 89
Magnetic field operator 80
Magnetic resonance spectroscopy, lineshapes 223
Magnetic resonance spectroscopy, Magnus expansion and 31
Magnetization density 83
Magnetization, multipolar expansion of 83 106—107
Magnus expansion 24 30—31 212
Malachite green 329
Many-body effects, in nonlinear response 479—483 480f—482f 513—515 515f
Many-body effects, in nonlinear response, beyond LFA, anharmonic oscillator real space expression for 491—493
Many-body effects, in nonlinear response, exciton transport and 507—512 511f 512f
Many-body effects, in nonlinear response, exciton-population variables and 507—512 511f 512f
Many-body effects, in nonlinear response, Green function expression 483—491 484f 493—496
Many-body effects, in nonlinear response, optical susceptibilities of periodic structures in k space 496—498
Many-body effects, in nonlinear response, signatures of cooperativity and 498—504 503f—507f 506—507
Markovian approximation 179
Markovian process 458
Master equation 177—178 184
Material and radiation field, combined state See Dressed states
Material equations, semiclassical 90—92
Material frequency 129
Material memory kernel 495
Material system evolution 112
Mathematical function 129 130
Matrix elements 61 177
Matrix elements for Liouville equation 54
Matrix elements in Hilbert space vs. Liouville space 58t
Matrix elements of reduced density operator 149
Matrix elements of relaxation superoperator 177
Matrix elements, Liouville space 57
Matrix elements, transition dipole 220 471
Matsubara frequencies 221 229
Maxwell equations 103 493
Maxwell equations, coupled with Bloch equation 12 93
Maxwell equations, Green function solution of 108—109
Maxwell equations, linear absorption and 94—95 96
Maxwell equations, macroscopic form 89—90
Maxwell equations, material quantity in 111
Maxwell equations, multiwave mixing and 97 103 493
Maxwell field 91 472—473 485 493
Maxwell field, Fourier components of 466
Maxwell field, Green function solution of 493
Maxwell field, relation to external field 108
Maxwell field, transverse 462—463 464
Maxwell — Boltzmann distribution 449
Maxwell — Liouville equations 92—93 99
Maxwell — Liouville equations, direct numerical integration 112
Maxwell — Liouville equations, semiclassical 111
Maxwell — Liouville equations, semiclassical, for material system evolution 112
Mean field equation 92
Mean-field ansatz See Local-field approximation (LFA)
Mean-field single-molecule theory 482n. See also Local-field approximation (LFA)
Memory kernel 12
Microscopic interference, vs. macroscopic interference 340
Microscopic oscillator vs. stochastic model 225
Mixed states 47 49t 52 132
Molecular aggregates, energy level diagram 484f
Molecular aggregates, enhanced nonlinear susceptibilities in 498—504 503f—506f 506—507
Molecular assemblies, nonlinear response See Local-field approximation (LFA)
Molecular charge density operator 86
Molecular dichroism, optically induced 453
Molecular dynamics equilibration 241
Molecular photodissociation spectroscopy 203
Molecular vibronic level scheme, for two electron level system 189 189f
Moments of absorption lineshape, in Condon approximation 211
Moments of linear absorption 193—196 195f
Momentum 21 56
Momentum space (k space), local-field approximation in 466—469
Momentum space (k space), nonlinear response in 124—127
Momentum space (k space), periodic structures in, optical susceptibilities of 496—498
Monte Carlo equilibration 241
Motional narrowing 223
Multilevel manifold with relaxation, response functions of 149—151 152f—158f 153—159
Multimode Brownian oscillator model 226—230 356—357 422
Multimode Brownian oscillator model, applications 304
Multimode Brownian oscillator model, doorway-window representation of nonlinear response function 361
Multimode Brownian oscillator model, high frequency (underdamped) modes 230
Multimode Brownian oscillator model, impulsive two-pulse echo signal of 305
Multimode Brownian oscillator model, inhomogeneous cumulant expansion and 240
Multimode Brownian oscillator model, multitude of time scales and 313
Multimode Brownian oscillator model, off-resonance Raman scattering and 422—424 423f 425f—427f 428 435
Multimode Brownian oscillator model, photon echoes for 306 307f 308
Multimode Brownian oscillator model, simulations for 188
Multimode Brownian oscillator model, strongly overdamped modes 230—233 232f—235f
Multimode Brownian oscillator model, vibrational quantum beats and 330 332
Multiple absorber systems 13
Multiplication by unity 40
Multiplication rules, for linear vector spaces 40
Multipolar expansion, of polarization and magnetization 83 93 106—107
Multitime correlation functions 13 131 289
Multiwave mixing 111
Multiwave mixing, polarization and 96—99 98f
Multiwave mixing, vs. linear polarization 3—4 4f
Nanostructures, classification 479—480
Nanostructures, periodic structures in k space, optical susceptibilities of 496—498
Near field microscopy 290
Negative time ordered exponential 25 29 61
Neutral particles 83
Nile blue, impulsive pump-probe spectroscopy 330 330f 331f
NMR See Nuclear magnetic resonance (NMR)
Non-Condon effects 357 385
Non-Markovian effects 12
Nonimpulsive measurements, wavepacket analysis See Wavepacket analysis of
Nonlinear index of refraction 174
Nonlinear optical spectroscopy, density operator and 76
Nonlinear polarization 97 129 297
Nonlinear polarization in real space 121
Nonlinear polarization, Fourier components of 126
Nonlinear polarization, low-order nonlinear techniques and 3—4
Nonlinear polarization, third-order 492—493
Nonlinear response functions 119 120 133 246
Nonlinear response functions for multilevel particle 187
Nonlinear response functions in real space, phenomenological approach to 462—466
Nonlinear response functions, calculation, microscopic theoretical framework for 481
Nonlinear response functions, calculation, using Heisenberg equations 139—140 160—162
Nonlinear response functions, calculation, using wavefunctions in Hilbert space 159—160
Nonlinear response functions, correlation functions See Correlation functions
Nonlinear response functions, doorway-window representation 359—363
Nonlinear response functions, generating functions for 347—349
Nonlinear response functions, Green function solution for 520—521
Nonlinear response functions, Liouville space pathways for 394f 394—395
Nonlinear response functions, many-body and cooperative effects in 479—483 480f—482f
Nonlinear response functions, nth-order 116
Nonlinear response functions, rotational contribution to 447—450
Nonlinear response functions, time domain vs. frequency domain techniques 128—131
Nonlinear response functions, wavefunction vs. density-operator formulations 136—138
Nonlinear response theory 111
Nonlinear response, spontaneous light emission 287
Nonlinear spectroscopy 188. See also Off-resonance spectroscopy
Nonlinear spectroscopy, relationships among, in Liouville space 133—134
Nonlinear spectroscopy, spontaneous light emission spectroscopy as 261
Nonlinear spectroscopy, vs. linear spectroscopy 3—5
Nonlocal expressions, for optical response, of extended systems 123—124
Nonlocal interactions 498
Nonlocal transformation 105
Nonradiative damping 501
Nonrelativistic material system, electrodynamics of 80
Norm (length) of vector 41
Normalization 40t 41
Normally ordered product of operators 516
NTCDA (3,4,7,8-naphthalenetetracarboxylic dianhydride) 480
Nuclear dynamics 188
Nuclear magnetic resonance (NMR) 10
Nuclear magnetic resonance (NMR), lines, in liquids 223
Nuclear magnetic resonance (NMR), models 10
Nuclear magnetic resonance (NMR), vs. optical spectroscopy 12—13
Nuclear motions, coherent 217—221 220f
Nuclear phase space 202
Nuclear polarization Kerr effect 446 447f
Nuclear spectral density 209
Nuclear spin 1/2 system 10
Nuclear wavepackets 372
Nuclear wavepackets, classical simulation of 349—351
Off-diagonal coupling 179
Off-diagonal element 176 180
Off-resonance birefringence 455f 455—457
Off-resonance dichroism 455—457
Off-resonance spectroscopy 384—385
Off-resonance spectroscopy, advantages of 411
Off-resonance spectroscopy, multidimensional, of liquids 432—437 433f 436f—439f 439—440
Off-resonance spectroscopy, Raman scattering 411—414 412f 413f 425
Off-resonance spectroscopy, Raman scattering, Fourier transform relationships 430—432
Off-resonance spectroscopy, Raman scattering, multimode Brownian oscillator model and 422—424 423f 425f—427f
Off-resonance spectroscopy, Raman scattering, process 414
Off-resonance spectroscopy, vs. resonant techniques 7 9—10 10f—12f 12—13
Off-resonant excitation optical process 442—443
Off-resonant light scattering 446
Ohmic dissipation 229
Operators 115
Operators and linear vector spaces 40—42
Operators in Liouville space 57
Operators in Liouville space, superoperators or tetradic operators 54—55 57
Operators, classical 257
Operators, density See Density operators
Operators, doorway 375
Operators, electric current 82
Ðåêëàìà