Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Mukamel S. — Principles of Nonlinear Optical Spectroscopy
Mukamel S. — Principles of Nonlinear Optical Spectroscopy



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Principles of Nonlinear Optical Spectroscopy

Àâòîð: Mukamel S.

Àííîòàöèÿ:

This textbook presents a systematic and unifying viewpoint for a wide class of nonlinear spectroscopic techniques in time domain and frequency domain. It is directed towards active researchers in physics, optics, chemistry, and materials science, as well as graduate students who enter this complex and rapidly developing field.
Nonlinear optical interactions of laser fields with matter provide powerful spectroscopic tools for the understanding of microscopic interactions and dynamic processes. One of the major obstacles facing researchers in this field, however, is the flood of experimental techniques and terminologies, which create a serious language barrier. The general microscopic correlation function approach to the nonlinear optical response developed in this book is essential for understanding the relationships among different techniques and a comparison of their information content, the design of new measurements, and for a systematic comparison of the optical response of different systems such as dyes in solutions, atoms and molecules in the gas phase, liquids, molecular aggregates and superlatives, and semiconductor nanostructures. The approach is based on formulating the nonlinear response by representing the state of matter by the density matrix and following its evolution on Liouville space. Current active research areas such as femtosecond time-domain techniques, semi-classical and wave-packet dynamics, pulse shaping, pulse locking, exciton confinement, and the interplay of electronic, nuclear and field coherence are emphasized.
The material has been developed from the author's highly successful interdisciplinary course at the University of Rochester attended byscience and engineering graduate students.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1995

Êîëè÷åñòâî ñòðàíèö: 576

Äîáàâëåíà â êàòàëîã: 20.03.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Liouville equation, Wigner transform and      75
Liouville space      13 42 117
Liouville space and tetradic notation      53—58 58t
Liouville space pathways      112 211 223 282 323 340 501
Liouville space pathways for nonlinear response functions      149 394f 394—395
Liouville space pathways for nonlinear response functions, generation of      347—349
Liouville space pathways for nonlinear response functions, rotational contribution to      446 448
Liouville space pathways for spontaneous light emission processes      267 268f
Liouville space pathways for three-pulse time-domain four-wave mixing      296 296f
Liouville space pathways for two electronic level system      197
Liouville space pathways in frequency domain      120—122
Liouville space pathways in frequency domain, linear response      121
Liouville space pathways in frequency domain, second-order response      121
Liouville space pathways in frequency domain, third-order response      122
Liouville space pathways in time domain      118—120
Liouville space pathways in time domain, linear response      118
Liouville space pathways in time domain, second-order response      119
Liouville space pathways in time domain, third-order response      119—120
Liouville space pathways, coherences and      134
Liouville space pathways, Condon approximation and      209
Liouville space pathways, factorization      187
Liouville space pathways, graphic representations      144
Liouville space pathways, nonlinear response in momentum (k) space      125 126
Liouville space pathways, optical response functions and      117 130
Liouville space pathways, phase-locked for spontaneous light emission      311—312
Liouville space pathways, populations and      134
Liouville space pathways, reduced dynamics of      356—357
Liouville space pathways, third-order response function and      153
Liouville space pathways, time-ordering and      132—133
Liouville space vs. Hilbert space      58t
Liouville space wavepackets, procedure for      192
Liouville space wavepackets, reduced equations of motion      357—359
Liouville space wavepackets, semiclassical picture, of nonlinear response function for off-resonant Raman scattering spectroscopy      413
Liouville space, advantages of      76 130—135
Liouville space, analogues      62 66 115
Liouville space, classical Franck — Condon principle and      405—406
Liouville space, commutator      265
Liouville space, completeness condition      56
Liouville space, coupling, for linear response function      158
Liouville space, coupling, for second-order response function      156f
Liouville space, coupling, for third-order response function      152f—153f
Liouville space, coupling, for two electronic level system      197
Liouville space, definition of      54—55 57
Liouville space, density operator in      76
Liouville space, density operator in, basic definitions for      45—48 49t
Liouville space, density operator in, reduced system      49—50
Liouville space, density operator in, time evolution of      50—53 52f
Liouville space, dephasing processes      134—135
Liouville space, description of      75
Liouville space, Dyson equation      65
Liouville space, expression, second-order response      121
Liouville space, expression, third-order response      122
Liouville space, formulation of      131
Liouville space, frequencies      384
Liouville space, Green functions      114 196 350
Liouville space, Green functions, dephasing and      144 148 149
Liouville space, Green functions, eigenstate, representation      147
Liouville space, Green functions, formulation of      64—67
Liouville space, Green functions, in frequency domain      121
Liouville space, Green functions, response functions and      117 143
Liouville space, Hamiltonian and      245
Liouville space, hermiticity in      66—67
Liouville space, Hilbert space Green functions and      65
Liouville space, intuitive picture and semiclassical approximations      131—132
Liouville space, linear response in      147—149
Liouville space, Magnus expansion in      63—64
Liouville space, matrix elements      57 66 149 177
Liouville space, merits of working in      117
Liouville space, notation      113 117 170.See
Liouville space, operators      113—114 171 194 255 442
Liouville space, operators, dipole      118 148
Liouville space, operators, effective      68
Liouville space, operators, partitioning of      61 68
Liouville space, operators, tetradic notation and      54—55 57
Liouville space, operators, time-independent      59 184
Liouville space, operators, zero-order Hamiltonian and      177
Liouville space, outer product of vectors      57
Liouville space, path integral in      349
Liouville space, projection operators in      67—68
Liouville space, propagator      59
Liouville space, pure/mixed states and      45—48 49f
Liouville space, reduced density operator and      49—50
Liouville space, reduced descriptions and thermal averaging      132
Liouville space, role of dephasing processes      134—135
Liouville space, semiclassical simulations of nonlinear response in      199—201
Liouville space, terminology      53
Liouville space, tetradic Green function in      446
Liouville space, third-order response function representation, vs. Hilbert space representation      196—199 197f
Liouville space, time evolution of density operator and      50—53
Liouville space, time evolution operator in      59—61 67
Liouville space, time-ordering      132—133
Liouville space, vector      71 170
Liouville space, vector, representing Hilbert space operator      55
Liouville space, wavepacket dynamics in      345—346
Liouville space-generating function (LGF)      356 358
Liouville space-generating function (LGF) for linear response      346
Liouville space-generating function (LGF), eigenstate expansion of      364
Liouville space-generating function (LGF), normalized      352
Liouville space-generating function (LGF), semiclassical equations of motion      351—355
Liouville space-generating function (LGF), time evolution of      355
Liouville — Maxwell equations      See Maxwell — Liouville equations
Liouville — Von Neumann equation      51
Liouville's theorem      70
Local field expressions, for optical susceptibilities of homogeneous systems      475—477
Local intermolecular modes      217
Local nonlinearities      498
Local oscillator      99 324
Local-field approximation (LFA)      461—462 496 504
Local-field approximation (LFA) in k space      466—469
Local-field approximation (LFA), Green function solution, factorized approximations for      488—489
Local-field approximation (LFA), Heisenberg picture and      483
Local-field approximation (LFA), local-field and cascading corrections      462—466
Local-field approximation (LFA), many-body effects and      479
Local-field approximation (LFA), microscopic derivation of      469—475 474f
Local-field approximation (LFA), nonlinear optical response in condensed phases and      479
Local-field approximation (LFA), optical response beyond, anharmonic oscillator real space expression for      491—493
Long wavelength approximation (dipole approximation)      112 113
Longitudinal vector fields      104—105
Lorentz expression, for local field      468
Lorentzian factors, classical Franck — Condon principle and      404
Lorentzian homogeneous broadening      338
Lorentzian lineshape      151 173 183 187 194 223 232 235f 283 292 293 335 510
Lorentzian lineshape vs. Gaussian profile      224
Macroscopic interference, vs. microscopic interference      340
Magnetic displacement field      89
Magnetic field operator      80
Magnetic resonance spectroscopy, lineshapes      223
Magnetic resonance spectroscopy, Magnus expansion and      31
Magnetization density      83
Magnetization, multipolar expansion of      83 106—107
Magnus expansion      24 30—31 212
Malachite green      329
Many-body effects, in nonlinear response      479—483 480f—482f 513—515 515f
Many-body effects, in nonlinear response, beyond LFA, anharmonic oscillator real space expression for      491—493
Many-body effects, in nonlinear response, exciton transport and      507—512 511f 512f
Many-body effects, in nonlinear response, exciton-population variables and      507—512 511f 512f
Many-body effects, in nonlinear response, Green function expression      483—491 484f 493—496
Many-body effects, in nonlinear response, optical susceptibilities of periodic structures in k space      496—498
Many-body effects, in nonlinear response, signatures of cooperativity and      498—504 503f—507f 506—507
Markovian approximation      179
Markovian process      458
Master equation      177—178 184
Material and radiation field, combined state      See Dressed states
Material equations, semiclassical      90—92
Material frequency      129
Material memory kernel      495
Material system evolution      112
Mathematical $\delta$ function      129 130
Matrix elements      61 177
Matrix elements for Liouville equation      54
Matrix elements in Hilbert space vs. Liouville space      58t
Matrix elements of reduced density operator      149
Matrix elements of relaxation superoperator      177
Matrix elements, Liouville space      57
Matrix elements, transition dipole      220 471
Matsubara frequencies      221 229
Maxwell equations      103 493
Maxwell equations, coupled with Bloch equation      12 93
Maxwell equations, Green function solution of      108—109
Maxwell equations, linear absorption and      94—95 96
Maxwell equations, macroscopic form      89—90
Maxwell equations, material quantity in      111
Maxwell equations, multiwave mixing and      97 103 493
Maxwell field      91 472—473 485 493
Maxwell field, Fourier components of      466
Maxwell field, Green function solution of      493
Maxwell field, relation to external field      108
Maxwell field, transverse      462—463 464
Maxwell — Boltzmann distribution      449
Maxwell — Liouville equations      92—93 99
Maxwell — Liouville equations, direct numerical integration      112
Maxwell — Liouville equations, semiclassical      111
Maxwell — Liouville equations, semiclassical, for material system evolution      112
Mean field equation      92
Mean-field ansatz      See Local-field approximation (LFA)
Mean-field single-molecule theory      482n. See also Local-field approximation (LFA)
Memory kernel      12
Microscopic interference, vs. macroscopic interference      340
Microscopic oscillator vs. stochastic model      225
Mixed states      47 49t 52 132
Molecular aggregates, energy level diagram      484f
Molecular aggregates, enhanced nonlinear susceptibilities in      498—504 503f—506f 506—507
Molecular assemblies, nonlinear response      See Local-field approximation (LFA)
Molecular charge density operator      86
Molecular dichroism, optically induced      453
Molecular dynamics equilibration      241
Molecular photodissociation spectroscopy      203
Molecular vibronic level scheme, for two electron level system      189 189f
Moments of absorption lineshape, in Condon approximation      211
Moments of linear absorption      193—196 195f
Momentum      21 56
Momentum space (k space), local-field approximation in      466—469
Momentum space (k space), nonlinear response in      124—127
Momentum space (k space), periodic structures in, optical susceptibilities of      496—498
Monte Carlo equilibration      241
Motional narrowing      223
Multilevel manifold with relaxation, response functions of      149—151 152f—158f 153—159
Multimode Brownian oscillator model      226—230 356—357 422
Multimode Brownian oscillator model, applications      304
Multimode Brownian oscillator model, doorway-window representation of nonlinear response function      361
Multimode Brownian oscillator model, high frequency (underdamped) modes      230
Multimode Brownian oscillator model, impulsive two-pulse echo signal of      305
Multimode Brownian oscillator model, inhomogeneous cumulant expansion and      240
Multimode Brownian oscillator model, multitude of time scales and      313
Multimode Brownian oscillator model, off-resonance Raman scattering and      422—424 423f 425f—427f 428 435
Multimode Brownian oscillator model, photon echoes for      306 307f 308
Multimode Brownian oscillator model, simulations for      188
Multimode Brownian oscillator model, strongly overdamped modes      230—233 232f—235f
Multimode Brownian oscillator model, vibrational quantum beats and      330 332
Multiple absorber systems      13
Multiplication by unity      40
Multiplication rules, for linear vector spaces      40
Multipolar expansion, of polarization and magnetization      83 93 106—107
Multitime correlation functions      13 131 289
Multiwave mixing      111
Multiwave mixing, polarization and      96—99 98f
Multiwave mixing, vs. linear polarization      3—4 4f
Nanostructures, classification      479—480
Nanostructures, periodic structures in k space, optical susceptibilities of      496—498
Near field microscopy      290
Negative time ordered exponential      25 29 61
Neutral particles      83
Nile blue, impulsive pump-probe spectroscopy      330 330f 331f
NMR      See Nuclear magnetic resonance (NMR)
Non-Condon effects      357 385
Non-Markovian effects      12
Nonimpulsive measurements, wavepacket analysis      See Wavepacket analysis of
Nonlinear index of refraction      174
Nonlinear optical spectroscopy, density operator and      76
Nonlinear polarization      97 129 297
Nonlinear polarization in real space      121
Nonlinear polarization, Fourier components of      126
Nonlinear polarization, low-order nonlinear techniques and      3—4
Nonlinear polarization, third-order      492—493
Nonlinear response functions      119 120 133 246
Nonlinear response functions for multilevel particle      187
Nonlinear response functions in real space, phenomenological approach to      462—466
Nonlinear response functions, calculation, microscopic theoretical framework for      481
Nonlinear response functions, calculation, using Heisenberg equations      139—140 160—162
Nonlinear response functions, calculation, using wavefunctions in Hilbert space      159—160
Nonlinear response functions, correlation functions      See Correlation functions
Nonlinear response functions, doorway-window representation      359—363
Nonlinear response functions, generating functions for      347—349
Nonlinear response functions, Green function solution for      520—521
Nonlinear response functions, Liouville space pathways for      394f 394—395
Nonlinear response functions, many-body and cooperative effects in      479—483 480f—482f
Nonlinear response functions, nth-order      116
Nonlinear response functions, rotational contribution to      447—450
Nonlinear response functions, time domain vs. frequency domain techniques      128—131
Nonlinear response functions, wavefunction vs. density-operator formulations      136—138
Nonlinear response theory      111
Nonlinear response, spontaneous light emission      287
Nonlinear spectroscopy      188. See also Off-resonance spectroscopy
Nonlinear spectroscopy, relationships among, in Liouville space      133—134
Nonlinear spectroscopy, spontaneous light emission spectroscopy as      261
Nonlinear spectroscopy, vs. linear spectroscopy      3—5
Nonlocal expressions, for optical response, of extended systems      123—124
Nonlocal interactions      498
Nonlocal transformation      105
Nonradiative damping      501
Nonrelativistic material system, electrodynamics of      80
Norm (length) of vector      41
Normalization      40t 41
Normally ordered product of operators      516
NTCDA (3,4,7,8-naphthalenetetracarboxylic dianhydride)      480
Nuclear dynamics      188
Nuclear magnetic resonance (NMR)      10
Nuclear magnetic resonance (NMR), lines, in liquids      223
Nuclear magnetic resonance (NMR), models      10
Nuclear magnetic resonance (NMR), vs. optical spectroscopy      12—13
Nuclear motions, coherent      217—221 220f
Nuclear phase space      202
Nuclear polarization Kerr effect      446 447f
Nuclear spectral density      209
Nuclear spin 1/2 system      10
Nuclear wavepackets      372
Nuclear wavepackets, classical simulation of      349—351
Off-diagonal coupling      179
Off-diagonal element      176 180
Off-resonance birefringence      455f 455—457
Off-resonance dichroism      455—457
Off-resonance spectroscopy      384—385
Off-resonance spectroscopy, advantages of      411
Off-resonance spectroscopy, multidimensional, of liquids      432—437 433f 436f—439f 439—440
Off-resonance spectroscopy, Raman scattering      411—414 412f 413f 425
Off-resonance spectroscopy, Raman scattering, Fourier transform relationships      430—432
Off-resonance spectroscopy, Raman scattering, multimode Brownian oscillator model and      422—424 423f 425f—427f
Off-resonance spectroscopy, Raman scattering, process      414
Off-resonance spectroscopy, vs. resonant techniques      7 9—10 10f—12f 12—13
Off-resonant excitation optical process      442—443
Off-resonant light scattering      446
Ohmic dissipation      229
Operators      115
Operators and linear vector spaces      40—42
Operators in Liouville space      57
Operators in Liouville space, superoperators or tetradic operators      54—55 57
Operators, classical      257
Operators, density      See Density operators
Operators, doorway      375
Operators, electric current      82
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå