|
![blank](/z.gif) |
Авторизация |
|
![blank](/z.gif) |
Поиск по указателям |
|
![blank](/z.gif) |
|
![blank](/z.gif) |
|
![blank](/z.gif) |
![Красота](/img/main/7.jpg) |
|
![blank](/z.gif) |
|
van Lint J.H., Wilson R.M. — Course in Combinatorics |
|
![blank](/z.gif) |
Предметный указатель |
Loop of a graph 1
Loop switching problem 69
Lorentz space 96—99
Lorentz, H.A. 96 99
Lovasz, L. 33 394 395 402 483
Lubell, D. 43 48
Lucas, F.E.A. 76 78 129
MacLane, S. 448
MacMahon, P.A. 146
MacNeish, H.F. 255 257 267 268
MacNeish’s theorem and conjecture 255 257 367
MacWilliams relations 219
MacWilliams, F.J. 218 228 229
MacWilliams’ theorem 218
Magic square 266
Magliveras, S.S. 195 212
Majorize 148—149
Mann, H.B. 265 268 354
Mantel, W. 29 34
Mantel’s theorem 29—30
Map on a surface 409ff
Marcus, M. 93 95 99
Marriage theorem 35
Matching in a graph 35
Mathieu groups 229 493
Mathieu, E. 229
Matrix-tree theorem 449
Matroid 289 425
Mattson, H.F. 219 229
MAXFLOW-MINCUT theorem 52 150 406 479
Maximal arc in a projective plane 328
Maximal chain in a poset 42—43 272 291
Maximum distance separable code 218 228
Maximum flow 50
Maximum matching 54
McFarland, R.L. 340
McKay, B.D. 153 156
Medema, P. 460
Meet (greatest lower bound) 271
Mendelsohn, E. 476 480
Mendelsohn, N.S. 262 268
Menger, K. 406
Merkx, F. 212
Mesh in a graph 436
Mesner, D.M. 234 246 248 368
Method of differences see “Difference methods”
Metric scheme 366 381
Mills, W.H. 195 212 340
Minc, H. 82 89 90 99
Mine’s conjecture 82—84
Minimal counterexample 20—22
Minimizing matrix 91ff
Minimum cut 52ff
Minimum distance of a code 184 214
Minimum weight 215
Minor of a graph 403
Mirsky, L. 43 48
Modular combinatorial geometry 279ff
Modular complement 280
Modular law 279
Moebius function of a poset 298ff 309
Moebius function, number theoretic 73—75 298
Moebius inversion 74 116 298 301 302 304 311 312
Moebius plane 323
Moebius, A.F. 73 78 298 323
Monochromatic triangles 22—23
Monotone subsequence 44
Monovalent vertex 12
Moon, J.W. 89 90
Moore, E.H. 267 268
Muir, T. 89
Muller, D.E. 172 186 323
Multigraph 2
Multinomial coefficients 15 101
Multiplicities of a scheme 369
Multiplier of a difference set 345ff
Multiplier Theorem 345ff 349ff
Mutually orthogonal Latin squares 266ff
n-gon 6 132 405
Near pencil 188 279 316
Necklaces 75—76 461 464—465 468—469 472
Negative Latin square graphs 373
Neighbors of a vertex 4
Net (partial geometry) 243 247 253 495
Neumaier, A. 240 242 249 366 389
Neumann, P.M. 78
Newman, M. 93 95 99
Nienhuys, J.W. 510
Niven, I. 129 130
Nonassociative product operation 116
Nondegenerate quadratic form 318
Nonembeddable design 200—201 211
Nonnegative matrices 92ff 398ff
Nonseparable graph 406ff 42Iff 441
Nontrivial difference set 331
Nordstrom — Robinson code 378
Nordstrom, A.W. 378
Normalized difference set 333
Normalized Hadamard matrix 172 190
NP-complete 9
Numerical multiplier of a difference set 345
Ohm, G.S. 455
Ohm’s Law 454
Orbits of a group 75 330 366 462 467 469 471
Order of a Hadamard matrix 183
Order of a projective plane 197
Order of an orthogonal array 158
Ordinary generating function 109
Orientable mesh 439
Orientation of a graph 405
Orthogonal array 158 261 382
Orthogonal idempotents of a scheme 368
Orthogonal Latin squares 250ff 495
Orthogonality relations 374
Orthomorphism of an abelian group 264—265
Ostrand, P. 40 41
Oval in a Projective Plane 198 340
Ovoid in projective 3-space 323 354
P-polynomial 381
Paige, L.J. 265 268
Pairwise orthogonal Latin squares 252 266
Paley graph 232 235
Paley matrix 176 222—223 226 334
Paley — Todd difference sets 334—335
Paley, R.E.A.C. 176 185 186 334
Pappian planes 285
Pappus Of Alexandria 284 289
Pappus’ theorem 284
Parabolic quadratic form 320ff
Parabolic Quadric 320ff
Parallel class in a Steiner system 315
Parallel class in an affine plane 199 243
Parallel class of sets 476
Parallel edges 2
Parameters of a scheme 365
Parity check matrix of a code 216
Parity check symbol 216
Parker, E.T. 251 255 267
Partial fractions 133 488
Partial geometry 241ff
Partial Latin square 160
Partially balanced design 388
Partially ordered set (poset) 42 298ff
Partition function 135ff 146
Partition lattice 273—274 301 309—311
Partitions of a number 132ff 148 293—295
Partitions of a set 40 87—88 105 476ff
Partly decomposable matrix 92
Pasch axiom 280ff
Pasch, M. 280 289
| Path in a graph 5
Paths in the X, Y plane 103 110 118 487
Payne, S.E. 247 249
Pedoe, D. 285 290
Peltesohn, R. 476 480
Pentagonal numbers 137
Perfect arc 313—315 328
Perfect code 215 218 220 224 229 365 384 386 389
Perfect matching 36 496
Permanent of a matrix 80ff 485
Permanents of (0, 1)-matrices 81—85
Permanents of nonnegative integral matrices 87ff
Permutation matrices 40 68 95 128 163 178 193 329
Perron — Frobenius theorem 398—399
Perron, O. 398
Perspective from a line 283
Perspective from a point 282
Petersen graph 9 32 231 233 391—392 394 403 413 415 423 431 433—434 450 481 500 501
Petersen, J.P.C. 231 391 481
Petrenjuk, A.Ya. 194 212
Pierce, J.R. 69
Pigeonhole Principle 44 493
Piper, F.C. 287 290
Planar difference set 331 347—348 355 361
Planar graph 1 408ff
Plane tree 119
Planted plane trees 119
Platonic solids 414 441 502
Pless, V. 222 229 363
Plotkin, M. 185
Plotkin’s bound 185
Pluecker, J. 210
Point graph of a partial geometry 242
Point of a combinatorial geometry 269
Point of a lattice 271
Point of an incidence structure 187
Point of perspectivity 283
Pollak, H.O. 63 69 390
Polya theory 461ff
Polygon 5 68 415
Polynomial scheme 381
Polyomino 112 129
Poset (partially ordered set) 42 298ff
Positive and negative vectors 96
Positive semidefinite or definite 195 393 396
Posner, E.C. 186 491
Probabilistic method 25 28 482
Probleme des menages 76 486
Probleme des rencontres 77
Projective design 196
Projective geometry 197 270 279 313
Projective plane 187 197 204 226 247 254 279 313—317 355
Projectively equivalent hermitian forms 325
Projectively equivalent quadratic forms 317ff
Proper coloring of a graph 20 305 404
Proper drawing of a graph 408ff
Proper partial geometry 243
Pruefer code 13
Pruefer, H. 12 18 19
Pseudo-geometric graph 242
Pulver, E.D. 474
Pythagoras 145
q-analogues 292 302
q-ary code 214
Q-polynomial 381
Quadratic form 63—65 203 317 492
Quadric in projective space 317ff
Quasigroup 157 255ff
Quasiresidual design 200 245
Quasisymmetric design 236 245
Quotient set 331—332
Rademacher, H. 146 147
Rado, R. 47 297 377 389
Radziszowski, S.P. 195 212
Rain in Holland 78
Raleigh quotient 392
Ramanujan, S. 146
Ramsey, F.P. 23 27 28
Ramsey’s theorem 22ff 29 297
Raney, G.N. 130
Rank in a combinatorial geometry 275ff
Rank of a flat 275
Rank of a hermitian form 325
Rank of a quadratic form 318
Rational function 112
Ray-Chaudhuri, D.K. 194 212 328 384 389
Real projective plane 198 433 437
Recoloring 20 428
Recurrence relation 104 114ff 138 295
recursive method 174 205
Reed — Muller codes 183—186 323 493
Reed, I.S. 172 186 323
Refinement order on partitions 273
Regions of an embedding 408
Regular bipartite graph 36
Regular graph 4 32 129 241 247 381 400 494
Regular Hadamard matrix 181 190 198 334
Remmel, J.B. 14 18
Repeated blocks 187 195
Repetition 154
Repetition code 182 182 182 215 215 215
Replication number 191 211 388
Residual design 193 200 245
Resolvable Steiner system 315
Resolvable transversal designs 258
Reversible algorithms 13
Riemann, G.F.B. 74 78
Ringel — Youngs theorem 435
Ringel, G. 435 444 448
Roberts, S.M. 28
Robinson, J.P. 378
Rooted trees and forests 13 125—126
Rosa, A. 476 480
Rota, G.-C. 130 289 290 311 312 378 425 426 496
Rotating drum problem 56
Rotations of the cube 465 505
Rothschild, B.L. 26 28 297
Row 157
Rowcomplete 170
Rowsum 148
Ryser, H.J. Preface 80 89 90 156 162 171 185 201 202 211 212 342 354 356
Sachs, H. 401
Saturated edge 51ff
Schellenberg, P.J. 261 268
Scheme 364ff
Schlaefli graph 245
Schlaefli, L. 245
Schoenheim, J. 47
Schrijver, A. 53 82 88 90 247 476 480
Schur, I. 18 27 482
Schutzenberger, M.P. 211 212
Schwenk, A.J. 401
Scott, L.L. 247
SDR theorem see “Hall’s Theorem”
SDR’s and permanents 81
Seidel, J.J. 236 246 247 248 249 492
Self-conjugate partitions 142
Selfdual code 216 355ff
Selforthogonal codes 216 355ff
Semi-simple algebra 360
Semimodular lattice 271ff 307
Semimodular law 277
Separation of a graph 406
Shannon capacity of a graph 394—395
Shannon, C.E. 228 229 394
Shimamoto, T. 246
Shrikhande, S.S. 251 255 267 494
Sieve methods 77
Signless Stirling numbers 104 473
Simple answers 255
|
|
![blank](/z.gif) |
Реклама |
![blank](/z.gif) |
|
|