Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Preim B., Bartz D. — Visualization in Medicine: Theory, Algorithms, and Applications
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Visualization in Medicine: Theory, Algorithms, and Applications
Àâòîðû: Preim B., Bartz D.
Àííîòàöèÿ: Visualization in Medicine is the first book on visualization and its application to problems in medical diagnosis, education, and treatment. The book describes the algorithms, the applications and their validation (how reliable are the results?), and the clinical evaluation of the applications (are the techniques useful?). It discusses visualization techniques from research literature as well as the compromises required to solve practical clinical problems.
The book covers image acquisition, image analysis, and interaction techniques designed to explore and analyze the data. The final chapter shows how visualization is used for planning liver surgery, one of the most demanding surgical disciplines. The book is based on several years of the authors' teaching and research experience. Both authors have initiated and lead a variety of interdisciplinary projects involving computer scientists and medical doctors, primarily radiologists and surgeons.
* A core field of visualization and graphics missing a dedicated book until now
* Written by pioneers in the field and illustrated in full color
* Covers theory as well as practice
ßçûê:
Ðóáðèêà: Ìåäèöèíà è çäðàâîîõðàíåíèå /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2007
Êîëè÷åñòâî ñòðàíèö: 680
Äîáàâëåíà â êàòàëîã: 30.12.2007
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Silhouettes, in object class discrimination 435
Silhouettes, line generation 428
Silhouettes, subpolygon 425
Silhouettes, surface rendering with 437
Simulation, integration with visualization 570—571
Simulation, Monte Carlo 515
Simulation, numerical 570
Simulation, surgery 553—561
Single-photon emission computed tomography (SPECT) 35 61—63
Single-photon emission computed tomography (SPECT), data 62
Single-photon emission computed tomography (SPECT), defined 61
Single-photon emission computed tomography (SPECT), dynamic 62
Single-photon emission computed tomography (SPECT), PET versus 62
Skeletonization 122—124
Skeletonization in vessel analysis 346—350
Skeletonization, direct 124
Skeletonization, illustrated 347
Skeletonization, indirect 122—124
Skeletonization, method comparison 124
Skeletonization, skeleton enhancement 348
Slices, browsing 72—73
Slices, CT 46
Slices, drawing on 296—297
Slices, emphasis in 448
Slices, selection 447—448
Smoothing with binomial filter 348
Smoothing, Laplacian 301
Smoothing, mesh 176—179
Smoothing, polygonal models 425
Smoothing, segmentation results 120—122
Sobel operator 150
Soft tissue deformation 555—558
Soft tissue deformation, simulation 555—558
Soft tissue deformation, simulation with FEM 556
Soft tissue deformation, simulation with mass-spring models 556—557
Soft-copy reading 69—80
Soft-copy reading, browsing slices 72—73
Soft-copy reading, diagnosis with 3D visualizations 77—80
Soft-copy reading, digital hanging protocol 76
Soft-copy reading, display devices 70—71
Soft-copy reading, image data evaluation 73
Soft-copy reading, integration 69—71
Soft-copy reading, of digital mammograms 71
Soft-copy reading, quantitative image analysis 73—76
Soft-copy reading, software assistant guidelines 76—77
Soft-copy reading, tasks 71—73
Soft-copy reading, windowing 71—72
Software assistants for liver surgery planning 516—519
Software assistants, defined 516
Software assistants, HepaVision 516 517
Software assistants, InterventionPlanner 517—519
Span space 170
Spatial domain 18 21
spatial resolution 29
Spatial resolution, defined 30
Spatial resolution, fovea 29
Spatialized transfer functions 288
Specificity 26
Specular reflection 146—148
Sphenoidotomy 396
Spin-spin relaxation 50
Splatting 206—212
Splatting, acceleration methods 210—212
Splatting, axis-aligned sheet-plane 209
Splatting, defined 206
Splatting, early splat elimination 211
Splatting, GPUs and 212
Splatting, illustrated 207
Splatting, post-classification 210
Splatting, preclassification 207 209
Splatting, precomputed footprints 210
Splatting, quality 208—210
Splatting, spherical splats 208
Splatting, splat overlap 208
Splatting, splat size 207 (see also “Direct volume visualization”)
Splitting box algorithm 168—169
Staircasing artifacts 23 24
Static noise reduction filters 89—91
Statistical Parametric Mapping (SPM) 55
Stereotactic frame 405
Stipplings 453
Streamlines with controlled density 481—482
Streamlines, adaptation for tensor data 480
Streamlines, adaptive placement 482
Streamlines, computation 478—483
Streamlines, defined 478
Streamlines, illumination of 482—483
Streamlines, representing fiber tracts 482
Streamlines, streamtubes versus 484
Streamlines, visualization example 479
Streamsurfaces 484
Streamtubes 484
Structures, enhancement 94—95
Structures, vascular 94
Subdivision surfaces, applied to vessel tree 357
Subdivision surfaces, visualization 355—357
Subpolygon silhouettes 425
Suggestive contours 425
Summed-area tables (SAT) 211
Superquadric tensor glyphs 474—475 476
Surface postprocessing 173—180
Surface postprocessing, geometry culling 173—175
Surface postprocessing, mesh reduction 175—176
Surface postprocessing, mesh smoothing 176—179
Surface postprocessing, voxelization 179—180
Surface shaded display (SSD) 7 77—78
Surface-based volume rendering 156—173
Surface-based volume rendering, contour tracing 158
Surface-based volume rendering, Cuberille voxel representation 158—159
Surface-based volume rendering, polygonal isosurface extraction 159—168 (see also “Volume rendering”)
Surgery education 552—566
Surgery education, associative phase 553
Surgery education, autonomous phase 553
Surgery education, clinical, CBT systems for 553
Surgery education, cognitive phase 552
Surgery education, operative techniques 552
Surgery simulation 553—561
Surgery simulation, arbitrary freeform cuts 555
Surgery simulation, collision detection 555 560
Surgery simulation, endoscopic 562
Surgery simulation, haptic feedback 555 560—561
Surgery simulation, hepatic 562—563
Surgery simulation, petrous bone 563—565
Surgery simulation, requirements 555
Surgery simulation, soft tissue deformation 555—558
Surgery simulation, validation 565—566
Surgery simulation, variable training scenarios 555 558—560
Surgical theory 552
Synchronized emphasis 447—449
Systemic anatomy 528
T-junctions 467
Table feed 46
Templates 272—273
Temporal denoising 243
Tensor glyphs 473—477
Tensor glyphs, 3D visualization 475—476
Tensor glyphs, color schemes 476—477
Tensor glyphs, density control 475
Tensor glyphs, ellipsoids 474 476
Tensor glyphs, evaluation criteria 473
Tensor glyphs, jittered placement 475
Tensor glyphs, superquadric 474—475 476
Tensor glyphs, visualization with 475—476
Tensorlines 478
Texture-mapping 212—219
Texture-mapping, dataset management 218—219
Texture-mapping, framebuffer accuracy 217
Texture-mapping, hybrid rendering algorithms 218
Texture-mapping, quality 215—218
Texture-mapping, resampling through 213
Texture-mapping, shortcomings 214—215
Texture-mapping, varying sampling distance 216
Texture-mapping, volume rendering illustration 213 (see also “Direct volume visualization”)
Thermoablations, applicator positioning 514—515
Thermoablations, physical effects 515—516
Thermoablations, planning 514—516
Thin slab volume rendering 193—194
Threshold-based segmentation 96—98
Threshold-based segmentation, application 97
Threshold-based segmentation, connected component analysis (CCA) 98
Threshold-based segmentation, multiple intensity intervals 96
Threshold-based segmentation, threshold selection 97—98 (see also “Segmentation”)
Time to peak (TTP) 240
Time-of-flight (TOF) 53 395
Tissue deformation 404
Tracked pointer tool 406
Tracking 407—409
Tracking, electromagnetic 407—408
Tracking, optical 408—409 (see also “Image-guided surgery”)
Transfer function specification 261—290
Transfer function specification by means of component functions 269—270
Transfer function specification for boundary emphasis 264—265
Transfer function specification, data-driven 263—266
Transfer function specification, future work 288
Transfer function specification, image-driven 267—270
Transfer function specification, opacity increase strategy 262
Transfer function specification, summary 288
Transfer functions, according to histogram 267
Transfer functions, binary opacity 143
Transfer functions, color 144—145
Transfer functions, defined 137—138
Transfer functions, design 263
Transfer functions, distance-based 280—286
Transfer functions, gradient-based 275—280
Transfer functions, gray-level 144—145
Transfer functions, impact on visual representation 144
Transfer functions, isovalues 145
Transfer functions, local 286—287
Transfer functions, multidimensional 270—275
Transfer functions, one-dimensional, strategies 262—270
Transfer functions, opacity (OTF) 187 420
Transfer functions, opacity, generating 265—266
Transfer functions, presets for specification 144
Transfer functions, reference 266—267
Transfer functions, spatialized 288
Transfer functions, specification 142—145
Transformations, comparison 128
Transformations, global 127 128
Transformations, local 127 128
Transparency 167—168
Trigeminal neuralgia 395
Trilinear interpolation, DTI data 465
Trilinear interpolation, illustrated 15 (see also “Interpolation”)
Trivariate color scales 33
Truncated cones, visualization with 353—355
Tube phantom 20
Tumor perfusion 238—240 248—253
Tumor perfusion, computer support 250—251
Tumor perfusion, imaging 250
Tumor perfusion, visualization techniques 251—253
Tumor segmentation 506
Tumor surgery, planning 284—285
Tumor surgery, resection proposals 510—511
Tumor surgery, risk analysis 508—511
Turbo-spin-echo (TSE) 395
Two-handed interaction 260
Two-level volume rendering 222
Two-level volume rendering, advantage 227—228
Two-level volume rendering, hybrid 227—228 (see also “Volume rendering”)
Ultrasound 57—60
Ultrasound, 3D 59
Ultrasound, advantage 58
Ultrasound, defined 57
Ultrasound, display block diagram 59
Ultrasound, images 57 58
Ultrasound, intravascular (IVUS) 59
Ultrasound, summary 63
Undersampling 19—21
Uniform grids 14
United Network for Organ Sharing (UNOS) 504
V-Collide 330
Validation, anatomic tree structures 365—371
Validation, clustering 492
Validation, criteria 229—230
Validation, data-level comparisons 232
Validation, distance measurement 319
Validation, geometric models 230—232
Validation, image-level comparison 232
Validation, metrics 125—126
Validation, qualitative 365—366
Validation, quantitative 366—369
Validation, results presentation 232—235
Validation, segmentation methods 124—126
Validation, studies 125
Validation, surgical simulators 565—66
Validation, volume visualization algorithms 228—235
Variable training scenarios 555 558—560
Variable training scenarios, automatic mesh generation 559—560
Variable training scenarios, strategies 558—559
Vascular structures 94
Vascular structures, human liver 344
Vascular structures, quantitative analysis 376
Vascular structures, tracing 100
Vascular structures, visualization 373
Vessel analysis 345—350
Vessel analysis, pipeline 122
Vessel analysis, segmentation 346
Vessel analysis, skeletonization 346—350
Vessel analysis, structure preprocessing 345—346
Vessel analysis, system identification 348—350
Vessel reconstruction 350—352
Vessel reconstruction for interaction 352
Vessel reconstruction for visualization 351—352
Vessel reconstruction, explicit 352—357
Vessel reconstruction, implicit 352 357—361
Vessel segmentation 122 346
Vessel visualization for diagnosis 374—377
Vessel visualization, explicit surface reconstruction 352—357
Vessel visualization, implicit surface reconstruction 357—361
Vessel visualization, overview 350—352
Vessel visualization, vessel reconstruction for 351—352
Video see-through devices 412
View-frustum culling 173—174
Virtual angioscopy 397—400
Virtual angioscopy of cerebral blood vessels 397—399
Virtual angioscopy of coronary blood vessels 399—400
Virtual bronchoscopy 389—391
Virtual bronchoscopy, illustrated 390
Virtual bronchoscopy, methods 391
Virtual cardioendoscopy 400
Virtual colonoscopy 387—389
Virtual colonoscopy, illustrated 389
Virtual colonoscopy, optical 388—389
Virtual colonoscopy, summary 389
Virtual endoscopy 78—79 381—402
Virtual endoscopy of pituitary gland 396—397
Virtual endoscopy, angioscopy 397—400
Virtual endoscopy, application scenarios 382—384
Virtual endoscopy, automatic (planned) navigation 385—386
Virtual endoscopy, bronchoscopy 389—391
Virtual endoscopy, cardioendoscopy 400
Virtual endoscopy, colonoscopy 387—389
Virtual endoscopy, diagnosis and screening 383
Virtual endoscopy, direct volume rendering 385
Virtual endoscopy, guided navigation 386—387
Virtual endoscopy, indirect volume rendering 384—385
Virtual endoscopy, intervention and therapy planning 383
Virtual endoscopy, intraoperative navigation 383
Virtual endoscopy, manual (free) navigation 386
Virtual endoscopy, navigation 385—386
Ðåêëàìà