Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Raychaudhury S. — Computational text analysis for functional genomics and bioinformatics
Raychaudhury S. — Computational text analysis for functional genomics and bioinformatics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Computational text analysis for functional genomics and bioinformatics

Автор: Raychaudhury S.

Аннотация:

This book brings together the two disparate worlds of computational text analysis and biology and presents some of the latest methods and applications to proteomics, sequence analysis and gene expression data. Modern genomics generates large and comprehensive data sets but their
interpretation requires an understanding of a vast number of genes, their complex functions, and interactions. Keeping up with the literature on a single gene is a challenge itself-for thousands of genes it is simply impossible.
Here, Soumya Raychaudhuri presents the techniques and algorithms needed to access and utilize the vast scientific text, i.e. methods that automatically "read" the literature on all the genes. Including background chapters on the necessary biology, statistics and genomics, in addition to practical
examples of interpreting many different types of modern experiments, this book is ideal for students and researchers in computational biology, bioinformatics, genomics, statistics and computer science.


Язык: en

Рубрика: Биология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2006

Количество страниц: 312

Добавлена в каталог: 11.12.2007

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Tamames, J., Ouzounis, C. et al.      7
Tamayo, P., Slonim, D. et al.      69
Term frequency      85 91
Term frequency vectors      90—1
Term weighting schemes      91
Tertiary structure, proteins      25
Text classification algorithms      195 202—3
Text classification algorithms, assignment to functional categories      212—13
Text classification algorithms, feature selection      210—12
Text classification algorithms, maximum entropy modeling      205—10 207
Text classification algorithms, naive Bayes text classification scheme      204—5
Text classification algorithms, nearest neighbor classification      203—4
Text classification algorithms, use in gene name recognition      235—6
Text matrix (T)      143
Text mining      2
Text mining, potential uses, candidate gene identification      8
Text mining, potential uses, database building      5 7
Text mining, potential uses, genomic data set analysis      7—8
Text mining, relevance of sequence analysis      38
Text resources, electronic text      9
Text resources, genome databases      9—11
Text, use in sequence analysis      107—9
Text-based methods, advantages      12—13
Textual information, combination with sequence information      120—21
Textual profiles, use in organization of sequence hits      114
Textual representation of genes      94—6
Textual similarity as indicator of homology      114—15
Textual similarity, relationship to biological similarity      97—9
Thomas, J., Milward, D. et al.      7 262
Thompson, J.D., Higgins, D.G. et al.      48
Threonine      25
Thymine      18 19
Tokenize step, gene name finding algorithm      240—1
Traceable Author Statements (TAS)      188 198 199
Tracing back, dynamic programming      47
Training examples      202 208 213 214—16
Training examples, construction      224
Training hidden Markov models      59—61
Transcription factor proteins      23 245 247
Transcription factors      24
Transcription initiation sites      22—3 22
Transcription of DNA      21 22
Transcription stop sites      22 23
Transfer RNA (tRNA)      21 pl
Transference of references      189—92
Transition probabilities, amino acids      59—60
Translation start sites      22 23
Translation stop sites      22 23
Translation, mRNA      22
Transport proteins      24
Transposon location identification      63
Tricarboxylic acid cycle (TCA), functional group      189 190
Trigger words, use in gene name recognition      235 236.
Triose phosphate isomerase, structure      pl 2.4
True positives and negatives      36
Truncation of words      90
Tryptophan      25
Tu, Q. Tang, H. et al.      107 112
Tu, Y., Stolovitzky, G. et al.      124
Tumor protector p53 gene      5
Tuteja, R. and Tuteja, N.      64
Twilight zone sequences      108
Two-state hidden Markov model      55
Tyrosine      25
Uetz, P.      248
Uetz, P., Giot, L. et al.      248
Unstudied genes, transference of references      189—91
Unsupervised machine learning algorithms      see Clustering algorithms
Unvisited state of nodes      180
Uracil      19 21
Valencia, A., Blaschke, C. et al.      195
Valine      25
Van Gool, A.J. et al.      149
Variance      34 35
Variance as function of latent dimension      94
Variation in gene names      228—29 230 231 232
Vascular endothelial growth factor      5
Velculescu, V.E. Zhang, L. et al.      64 141
Venter, J.C., Adams, M.D. et al.      1
Visited state of nodes      180
Viterbi algorithm      57—9 58
Vocabulary building      88—90
Vorbruggen, G., Onel, S. et al.      192
Walhout, A.J., Sordella, R. et al.      248
Weight matrices      51—3 83
Weight matrices, construction      52
Weighted word vectors      140 142 161
Weighted word vectors, uses      112
Weighted word-document matrix (W)      91
Weighting words      88 90—1 100
Weighting words, keywords for breathless and heartless      96 97
Weighting words, strategies      113
White, K.P., Rifkin, S.A. et al.      63
Whole-text mining      9
Wong, L.      7
Word appearance, use in name recognition      228 232—3 234 241—3
Word covariance matrix      92—4
Word distribution divergence (WDD)      157—60
Word distribution divergence (WDD), precision-recall plot      160
Word values in document similarity assessment      88
Word vector similarity, breathless and other Drosophila genes      97—8
Word vector similarity, relationship to gene expression similarity      99 100
Word vector similarity, relationship to sequence similarity (breathless)      99
Word vectors      14 84—6 157
Word vectors, creation for genes      95—6 140
Word vectors, selection of keywords      142
Word-document matrix (A)      85
Words, expression value      142—3
Words, independence assumption      204 205
Wormbase      9 11 184
Wormbase, synonym lists      229
Xie, H., Wasserman, A. et al.      188
Yandell, M.D. and Majoros, W.H.      2 7
Yang, Y. and Pederson, J.P.      89
Yeast data set, application of dendrogram pruning method      181—3
Yeast data set, cluster screening by NDPG      174—8 175 pl
Yeast data set, cluster screening by NDPG, high scoring clusters      177
Yeast gene annotation, effectiveness of text classification algorithms      216—23
Yeast gene expression data, selforganizing map      70
Yeast genes, appearance of names      232
Yeast two hybrid assays      1 26 245 247—9
Yeast two hybrid assays, advantage of text-based approach      12
Yeast two hybrid assaysapplication of NEI scores      141
Yeast, assembly of functional groups      185—9
Yeast, distribution of NEI scores      133
Yeast, DNA-dependent ATPase genes      148—50 149
Yeast, expression log ratios      127
Yeast, gene expression study      126—7
Yeast, GO annotated genes      13
Yeast, keywords      144—5
Yeast, literature index      185 186
Yeast, literature-based scoring system      129—30
Yeast, NEI scores      136
Yeast, NEI scores of individual experiments      136—8 137
Yeast, neighbor expression information (NEI) scoring      132—6
Yeast, sensitivity of NDPG      187
Yeast, top fifteen genes      127—9 128
Yeast, transfer RNA structure      pl 2.2
Yeast, tricarboxylic acid cycle (TCA) functional group      189 190
Yeung, K.Y. and Ruzzo, W.L.      67
Yoshida, M., Fukuda, K. et al.      238
Yu, H., Hripcsak, G. et al.      238
z-score      35
z-score, expression values of words      143—4
z-score, use in selection of key      0
z-score, use in selection of keywords      112—13
Zhang, Z. and Buchman, A.R.      149
Zhu, H., Bilgin, M. et al.      1 247 248
Zipf, G, K      88
“-ase” suffix      233 241
“-in” suffix      233 241
“autophagy” gene group, corruption study      166—7 168
“autophagy” gene group, NDPG score      167
“Cellular Location” terms, Gene Ontology      12
“ion homeostasis” gene group, corruption study      166—7 168
“ion homeostasis” gene group, NDPG score      167
“mitochondrial ribosome” gene cluster      169
“mRNA splicing” yeast genes      169
“spindle pole body assembly and function” gene cluster      169
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте