Авторизация
Поиск по указателям
Raychaudhury S. — Computational text analysis for functional genomics and bioinformatics
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Computational text analysis for functional genomics and bioinformatics
Автор: Raychaudhury S.
Аннотация: This book brings together the two disparate worlds of computational text analysis and biology and presents some of the latest methods and applications to proteomics, sequence analysis and gene expression data. Modern genomics generates large and comprehensive data sets but their
interpretation requires an understanding of a vast number of genes, their complex functions, and interactions. Keeping up with the literature on a single gene is a challenge itself-for thousands of genes it is simply impossible.
Here, Soumya Raychaudhuri presents the techniques and algorithms needed to access and utilize the vast scientific text, i.e. methods that automatically "read" the literature on all the genes. Including background chapters on the necessary biology, statistics and genomics, in addition to practical
examples of interpreting many different types of modern experiments, this book is ideal for students and researchers in computational biology, bioinformatics, genomics, statistics and computer science.
Язык:
Рубрика: Биология /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2006
Количество страниц: 312
Добавлена в каталог: 11.12.2007
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Tamames, J., Ouzounis, C. et al. 7
Tamayo, P., Slonim, D. et al. 69
Term frequency 85 91
Term frequency vectors 90—1
Term weighting schemes 91
Tertiary structure, proteins 25
Text classification algorithms 195 202—3
Text classification algorithms, assignment to functional categories 212—13
Text classification algorithms, feature selection 210—12
Text classification algorithms, maximum entropy modeling 205—10 207
Text classification algorithms, naive Bayes text classification scheme 204—5
Text classification algorithms, nearest neighbor classification 203—4
Text classification algorithms, use in gene name recognition 235—6
Text matrix (T) 143
Text mining 2
Text mining, potential uses, candidate gene identification 8
Text mining, potential uses, database building 5 7
Text mining, potential uses, genomic data set analysis 7—8
Text mining, relevance of sequence analysis 38
Text resources, electronic text 9
Text resources, genome databases 9—11
Text, use in sequence analysis 107—9
Text-based methods, advantages 12—13
Textual information, combination with sequence information 120—21
Textual profiles, use in organization of sequence hits 114
Textual representation of genes 94—6
Textual similarity as indicator of homology 114—15
Textual similarity, relationship to biological similarity 97—9
Thomas, J., Milward, D. et al. 7 262
Thompson, J.D., Higgins, D.G. et al. 48
Threonine 25
Thymine 18 19
Tokenize step, gene name finding algorithm 240—1
Traceable Author Statements (TAS) 188 198 199
Tracing back, dynamic programming 47
Training examples 202 208 213 214—16
Training examples, construction 224
Training hidden Markov models 59—61
Transcription factor proteins 23 245 247
Transcription factors 24
Transcription initiation sites 22—3 22
Transcription of DNA 21 22
Transcription stop sites 22 23
Transfer RNA (tRNA) 21 pl
Transference of references 189—92
Transition probabilities, amino acids 59—60
Translation start sites 22 23
Translation stop sites 22 23
Translation, mRNA 22
Transport proteins 24
Transposon location identification 63
Tricarboxylic acid cycle (TCA), functional group 189 190
Trigger words, use in gene name recognition 235 236.
Triose phosphate isomerase, structure pl 2.4
True positives and negatives 36
Truncation of words 90
Tryptophan 25
Tu, Q. Tang, H. et al. 107 112
Tu, Y., Stolovitzky, G. et al. 124
Tumor protector p53 gene 5
Tuteja, R. and Tuteja, N. 64
Twilight zone sequences 108
Two-state hidden Markov model 55
Tyrosine 25
Uetz, P. 248
Uetz, P., Giot, L. et al. 248
Unstudied genes, transference of references 189—91
Unsupervised machine learning algorithms see Clustering algorithms
Unvisited state of nodes 180
Uracil 19 21
Valencia, A., Blaschke, C. et al. 195
Valine 25
Van Gool, A.J. et al. 149
Variance 34 35
Variance as function of latent dimension 94
Variation in gene names 228—29 230 231 232
Vascular endothelial growth factor 5
Velculescu, V.E. Zhang, L. et al. 64 141
Venter, J.C., Adams, M.D. et al. 1
Visited state of nodes 180
Viterbi algorithm 57—9 58
Vocabulary building 88—90
Vorbruggen, G., Onel, S. et al. 192
Walhout, A.J., Sordella, R. et al. 248
Weight matrices 51—3 83
Weight matrices, construction 52
Weighted word vectors 140 142 161
Weighted word vectors, uses 112
Weighted word-document matrix (W) 91
Weighting words 88 90—1 100
Weighting words, keywords for breathless and heartless 96 97
Weighting words, strategies 113
White, K.P., Rifkin, S.A. et al. 63
Whole-text mining 9
Wong, L. 7
Word appearance, use in name recognition 228 232—3 234 241—3
Word covariance matrix 92—4
Word distribution divergence (WDD) 157—60
Word distribution divergence (WDD), precision-recall plot 160
Word values in document similarity assessment 88
Word vector similarity, breathless and other Drosophila genes 97—8
Word vector similarity, relationship to gene expression similarity 99 100
Word vector similarity, relationship to sequence similarity (breathless) 99
Word vectors 14 84—6 157
Word vectors, creation for genes 95—6 140
Word vectors, selection of keywords 142
Word-document matrix (A) 85
Words, expression value 142—3
Words, independence assumption 204 205
Wormbase 9 11 184
Wormbase, synonym lists 229
Xie, H., Wasserman, A. et al. 188
Yandell, M.D. and Majoros, W.H. 2 7
Yang, Y. and Pederson, J.P. 89
Yeast data set, application of dendrogram pruning method 181—3
Yeast data set, cluster screening by NDPG 174—8 175 pl
Yeast data set, cluster screening by NDPG, high scoring clusters 177
Yeast gene annotation, effectiveness of text classification algorithms 216—23
Yeast gene expression data, selforganizing map 70
Yeast genes, appearance of names 232
Yeast two hybrid assays 1 26 245 247—9
Yeast two hybrid assays, advantage of text-based approach 12
Yeast two hybrid assaysapplication of NEI scores 141
Yeast, assembly of functional groups 185—9
Yeast, distribution of NEI scores 133
Yeast, DNA-dependent ATPase genes 148—50 149
Yeast, expression log ratios 127
Yeast, gene expression study 126—7
Yeast, GO annotated genes 13
Yeast, keywords 144—5
Yeast, literature index 185 186
Yeast, literature-based scoring system 129—30
Yeast, NEI scores 136
Yeast, NEI scores of individual experiments 136—8 137
Yeast, neighbor expression information (NEI) scoring 132—6
Yeast, sensitivity of NDPG 187
Yeast, top fifteen genes 127—9 128
Yeast, transfer RNA structure pl 2.2
Yeast, tricarboxylic acid cycle (TCA) functional group 189 190
Yeung, K.Y. and Ruzzo, W.L. 67
Yoshida, M., Fukuda, K. et al. 238
Yu, H., Hripcsak, G. et al. 238
z-score 35
z-score, expression values of words 143—4
z-score, use in selection of key 0
z-score, use in selection of keywords 112—13
Zhang, Z. and Buchman, A.R. 149
Zhu, H., Bilgin, M. et al. 1 247 248
Zipf, G, K 88
“-ase” suffix 233 241
“-in” suffix 233 241
“autophagy” gene group, corruption study 166—7 168
“autophagy” gene group, NDPG score 167
“Cellular Location” terms, Gene Ontology 12
“ion homeostasis” gene group, corruption study 166—7 168
“ion homeostasis” gene group, NDPG score 167
“mitochondrial ribosome” gene cluster 169
“mRNA splicing” yeast genes 169
“spindle pole body assembly and function” gene cluster 169
Реклама