Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Raychaudhury S. — Computational text analysis for functional genomics and bioinformatics
Raychaudhury S. — Computational text analysis for functional genomics and bioinformatics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Computational text analysis for functional genomics and bioinformatics

Автор: Raychaudhury S.

Аннотация:

This book brings together the two disparate worlds of computational text analysis and biology and presents some of the latest methods and applications to proteomics, sequence analysis and gene expression data. Modern genomics generates large and comprehensive data sets but their
interpretation requires an understanding of a vast number of genes, their complex functions, and interactions. Keeping up with the literature on a single gene is a challenge itself-for thousands of genes it is simply impossible.
Here, Soumya Raychaudhuri presents the techniques and algorithms needed to access and utilize the vast scientific text, i.e. methods that automatically "read" the literature on all the genes. Including background chapters on the necessary biology, statistics and genomics, in addition to practical
examples of interpreting many different types of modern experiments, this book is ideal for students and researchers in computational biology, bioinformatics, genomics, statistics and computer science.


Язык: en

Рубрика: Биология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2006

Количество страниц: 312

Добавлена в каталог: 11.12.2007

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Munich Information Center for Protein Sequences (MIPS)      7 152 196
Murzin, A.G. Brenner, S.E. et al.      117
Mus musculus      see Mouse
Mycobacterium tuberculosis, genome size      18
N-gram classifier      241
Naive Bayes text classification scheme      203 204—5 216
Naive Bayes text classification scheme, accuracy      221 222
Naive Bayes text classification scheme, use in gene name recognition      235—6 242—3
Naive Bayes text classification scheme, use in protein-protein interaction identification      262
Name recognition      see Gene name recognition
National Library of Medicine, assignment of MeSH headings      224
Natural language processing      2
Natural language processing algorithms      83
Nearest neighbor classification      75
Nearest neighbor classification, accuracy      217 218
Nearest neighbor classification, application to text classification      203—4 216
Needleman, S.B. and Wunsch, C.D.      44
Negations      86
Neighbor divergence (ND)      163—4
Neighbor divergence (ND), precision-recall plot      160
Neighbor divergence per gene (NDPG)      152 162 164—6
Neighbor divergence per gene (NDPG) scores, nodes      179
Neighbor divergence per gene (NDPG) scores, random and functional groups      166
Neighbor divergence per gene (NDPG), computational approach      153—5
Neighbor divergence per gene (NDPG), corruption studies      166—7 168
Neighbor divergence per gene (NDPG), data types required      155
Neighbor divergence per gene (NDPG), evaluation across different organisms      184—9 191
Neighbor divergence per gene (NDPG), evaluation of method      155—7
Neighbor divergence per gene (NDPG), precision-recall plot      160
Neighbor divergence per gene (NDPG), scores for functional groups      167
Neighbor divergence per gene (NDPG), screening of gene expression clusters      168—9 173—8 pl
Neighbor divergence per gene (NDPG), sensitivity, relationship to annotation quality      179
Neighbor expression information (NEI) scoring      124 130—2
Neighbor expression information (NEI) scoring, application to phosphate metabolism data set      132—6 140
Neighbor expression information (NEI) scoring, application to SAGE and yeast-2-hybrid assays      141
Neighbor expression information (NEI) scoring, low induction genes      138—9
Neighbor expression information (NEI) scoring, scores of individual experiments      136—8 137
Neighborhood words      48
Nelson, D.L., Lehninger, A.L. et al.      17
Networks, genetic      245 246—7
Neural networks      75
Ng, S.K. and Wong, M.      7
Nigam, K., Lafferty, J. et al.      205—6 218
Node selection, dendrograms      179—81
Nodes, pruning      178—81 pl
Nodes, states      180
Noise      123 124—6
Noise, management in phosphate metabolism study      129—41
Normal distribution      32
Normal distribution, z-score      35
Novak, J.P., Sladek, R. et al.      124
Nucleosome GO functional group      176
Nucleotide bases      18 19
Nucleotide bases, in RNA      21
Nucleotide bases, pairing      19 20
Nucleotide bases, phosphodiester bond      20
Number, prediction of likelihood of interactions      256 257 258 259
Nylon gene arrays      63
Ohta, Y., Yamamoto, Y. et al.      7
Oligonucleotide arrays      62
Online journals      3
Ono, T., Hishigaki, H. et al.      7 262
Oryza sativa, GO annotated genes      13
Overlap coefficient      87
Overlap, clusters and functional groups      176—7 pl
p53      5
Pairwise sequence alignment      44—8 96
PAM250 matrix      44
Parameter weights, maximum entropy classification      209
Parsing sentences      262
Part-of-speech tagging      233—5 241
Part-of-speech, use in identification of protein-protein interactions      262
PATHWAYS database      201
Pearson, W.R.      43 48
Pearson, W.R. and Lipman, D.J.      48
Peer-reviewed literature      2
Peer-reviewed literature, value in genomic data set analysis      8
Peptide bond      24
Performance measures      35—7
Petukhova, G. et al.      149 151
PH011 gene      128 129—30
PH011 gene, expression ratio distribution      131
Phenylalanine      25
Phillips, B., Billin, A.N. et al.      192
Phosphate metabolism study      126—7
Phosphate metabolism study, distribution of NEI scores      133
Phosphate metabolism study, expression log ratios      127
Phosphate metabolism study, keywords      144—5
Phosphate metabolism study, literature-based scoring system      129—30
Phosphate metabolism study, NEI scores      136
Phosphate metabolism study, NEI scores of individual experiments      136—8 137
Phosphate metabolism study, neighbor expression information (NEI) scoring      132—6
Phosphate metabolism study, top fifteen genes      127—9 128
Phosphodiester bond      20
Plasmodium falciparum, genome size      18
Poisson distribution      32 33 163 164
Pollack, J.R., Perou, C.M. et al.      63
Poly-A tail, RNA      21 22
Polyadenylation signal      23
Polymerase proteins      24. see also DNA polymerase; RNA polymerase
Poorly referenced areas      108 117 140 184
Poorly referenced areas, functions      188—9
Poorly referenced areas, transference of references      189—92
Poorly referenced areas, use of sequence similarity      111
Poorly referenced areas, worm      187
Population statistics      34—5
Porter, M.F. (Porter’s algorithm)      90
Position specific iterative BLAST (PSI-BLAST)      53—4 115
Position specific iterative BLAST (PSI-BLAST), evaluation      117—20 118 119
Position specific iterative BLAST (PSI-BLAST), modification to include text      116—17
PRECISION      37 212
Precision, PSI-BLAST      118—19
Precision-recall performance, GO codes      222—4 223
Precision-recall plot, functional coherence scoring methods      160
Predefined sets of words      90
Prediction results      36
Predictive algorithms, measures of      35—7
Prey proteins      248
Primary structure, proteins      25
Primary transcript      22
Principal component analysis (PCA)      73—4 92
probability      27—8
Probability density function, multivariate normal distribution      76
Probability distribution functions (pdfs)      31—3
Probability distribution functions (pdfs), statistical parameters      35
Probability, Bayes' theorem      30
Probability, conditional      28—9
Probability, independence of events      29—30
Probability, information theory      33—4
Profile drift      116
Profiles      50 65
Progressive alignment      49
Proline      25
Promoter sites, DNA      21 22 23
Protein binding      141
Protein interaction networks      245
Protein name recognition, use of word appearance      233 234
Protein sequence probabilities, use of Bayes’ theorem      30
Protein-gene interactions      247
Protein-protein interactions      245 247
Protein-protein interactions, affinity precipitation      248
Protein-protein interactions, gene name co-occurrence      250—59
Protein-protein interactions, information extraction strategies      259—2
Protein-protein interactions, statistical textual classifiers      262—68
Protein-protein interactions, yeast-2-hybrid method      247—48
Proteins      24—6
Proteins, Edman degradation      39—40
Proteins, function assignment, role of text analysis      108
Proteins, function assignment, utilization of text and sequence information      120—21
Proteins, functions      18 26 27
Proteins, SCOP database      117—18
Proteins, synthesis      18 21—2
Proteins, tertiary structure      pl 2.4
Proteomics methods, introduction      1
Proux, D., Rechenmann, F. et al.      7 233
Pruitt, K.D. and Maglott, D.R.      4 11
Pruning dendrograms      178—81 pl
Pruning dendrograms, application to yeast data set      181—4
Pseudo-counts of words, use in naive Bayes classification      204—5
Pseudo-reference assignation      110
PU conditions, phosphate metabolism study      126
Public Library of Science (PLOS)      3 9
PubMed abstracts      2 3 4 9 11 pl
PubMed abstracts, use for NDPG      155
PubMed Central      3 9
Purine nucleotide bases      18 19
Pustejovsky, J., Castano, J. et al.      238
Pyrimidine nucleotide bases      18 19
Quality, genomics literature      4
Rain, J.C., Selig, L. et al.      248
Rare words      88 89 91
Ratnaparkhi, A.      205 209
Rattus norvegicus, GO annotated genes      13
Raychaudhuri, S. and Altman, R. B.      184
Raychaudhuri, S., Chang, J.T. et al.      7 8 179 188
Raychaudhuri, S., Schu? tze, H. et al.      152 157
Raychaudhuri, S., Stuart, M. et al.      63 72
Raychaudhuri, S., Sutphin, P.D. et al.      62
RDH54 gene, representation in literature      150 151
Real-values vectors, comparison metrics      87
Recall      37 212
Recall, PSI-BLAST      118
Reference indices      95 152 185 188
Reference indices, genome databases      9—11
Reference matrix (R)      142
References, in SWISS-PROT      109
Relevance, literature sources      4—5
Replicates, value in recognition of false positives      138
Reporter genes      248
Restriction enzymes      64
Ribonucleic acid      see RNA
Ribonucleotides      21
Ribose      19
Ribosomal RNAs (rRNA)      21
Riley, M.      196
Rindflesch, T.C., Tanabe, L. et al.      236
Ripley, B.D.      67 75
RNA      18 20—2
RNA polymerase      18 21
RNA, binding by proteins      25 26
RNA, nucleotide bases      19
RNA, yeast transfer RNA structure      pl 2.2
Roberts, R.J.      3
Roots of gene names      237 241—2
Rosenfeld, R.      83 197 218
Ross, D.T., Scherf, U. et al.      67
Saccharomyces cerevisiae      see Yeast
Saccharomyces Genome Database (SGD)      9 11 127 174 180 184 212 221 251
SAGE (Serial Analysis of Gene Expression)      62 64—5 pl
SAGE (Serial Analysis of Gene Expression), use with NEI scores      141
Saldanha, A.J., Brauer, M. et al.      126
Sample preparation, sources of variability      125
Sanger dideoxy method      39 pl
Sanger dideoxy sequencing method      39 pl
Schena, M., Shalon, D. et al.      63
Schug, J., Diskin, S. et al.      188
Scope of functionally coherent gene groups      150
Score matrix, dynamic programming      45
Score step, gene name finding algorithm      241
Scoring functions in multiple alignment      48—9
Scoring functions in pairwise alignment      42
Scoring of functional coherence      153—4 157
Secondary structure prediction, hidden Markov models      56 57
Sekimizu, T., Park, H.S. et al.      7 262
Selected state of nodes      180
Self-hybridization, mRNA      21
Self-organizing maps      69—70 173 pl.7.1
Self-organizing maps, yeast gene expression data      70 174
Semantic neighbors      153
Semantic neighbors, number, relationship to performance of NDPG      165
Sensitivity      36 37
Sensitivity of NDPG      187
Sentence co-occurrences      251 252 253 254
Sequence alignment      42—4
Sequence alignment, BLAST      48
Sequence alignment, dynamic programming      44—7
Sequence alignment, multiple      48—61
Sequence analysis, use of text      107—9
Sequence comparison      40—2
Sequence contamination      54
Sequence hits, description by keywords      112—14
Sequence hits, organization by textual profiles      114
Sequence hits, sequence information, combination with textual information      120—21
Sequence similarity, relationship to word vector similarity (breathless)      99
Sequence similarity, use to extend literature references      111—12
Sequences, comparison to profiles      50—3
sequencing      8 14 38
Sequencing, Edman degradation of proteins      39—40
Serine      25
Sharff, A. and Jhoti, H.      1
Shatkay, H. and Feldman, R.      2 7
Shatkay, H., Edwards, S. et al.      8 95 112
Sherlock, G.      67
Shinohara, M. et al.      151
Shor, E. et al.      151
Shotgun assembly strategy      39
Signon, L. et al.      151
Single expression series, keyword assignment      141—5
Single expression series, lack of context      123
Single expression series, noise      124—6
Single expression series, phosphate metabolism study      126—30 132—40
Single nucleotide polymorphism, detection, introduction      1
Single nucleotide polymorphism, identification      63
Smarr, J. and Manning, C.      241
Sources of noise      125
Specificity      36
Spellman, P.T., Sherlock, G. et al.      63 78
Splicing, primary transcript      22
Spotted DNA microarrays      62 63
Standard deviation      34 35
Standardized gene names      228—29
Stanford Microarray Database (SMD)      126
Stapley, B.J. , Kelley, L.A. et al.      120
Statistical machine learning      262—68
Statistical parameters      34—5
Statistical parameters, gene reference indices      174
Stein, L., Sternberg, P. et al.      9 184 229
Stemming      90
Stephens, M., Palakal, M. et al.      7
Stop lists      89 90
stopwords      216
String matching strategy      40—1
Structural Classification of Proteins Database (SCOP)      117—18
Structural proteins      24
Stryer, L.      17 39
Study areas, bias      5
Subsequence alignment      45
Substitution matrices      43 44
Substitution of amino acids      41 42—3
Sum of pairs scoring system      49
Sung, P. et al.      151
Supervised machine learning algorithms      66 74—9 202
Support vector machine classifiers      242 243 263
SWISS-PROT database      3 11 11 108 109—11 115 118 189 pl
Symington, L.S.      151
Synonym lists      229
Synonyms for genes      230—1 232
Syntax, use in recognition of gene names      228 233—5 241
Tag sequences      64
Tagging enzyme      64
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте