Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Riemannian Manifolds: an Introduction to Curvature

Автор: Lee J.M.

Аннотация:

This text is designed for a one-quarter or one-semester graduate course on Riemannian geometry. It focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced study of Riemannian manifolds. The book begins with a careful treatment of the machinery of metrics, connections, and geodesics, and then introduces the curvature tensor as a way of measuring whether a Riemannian manifold is locally equivalent to Euclidean space. Submanifold theory is developed next in order to give the curvature tensor a concrete quantitative interpretation. The remainder of the text is devoted to proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet's Theorem, and the characterization of manifolds of constant curvature. This unique volume will appeal especially to students by presenting a selective introduction to the main ideas of the subject in an easily accessible way. The material is ideal for a single course, but broad enough to provide students with a firm foundation from which to pursue research or develop applications in Riemannian geometry and other fields that use its tools.


Язык: en

Рубрика: Математика/Геометрия и топология/Дифференциальная геометрия/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1997

Количество страниц: 224

Добавлена в каталог: 19.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Radial vector field, unit      77
Rado, Tibor      167
Raising an index      28
Rank of a tensor      12
Rauch comparison theorem      203 204
Real projective space      148
Regular curve      92
Regular submanifold      15
Relativity, general      31 126
Relativity, special      31
Reparametrization      92
Reparametrization of admissible curve      93
Rescaling lemma      73
Restricted exponential map      72
Ricci curvature      124
Ricci identity      128
Ricci tensor      124
Ricci tensor, geometric interpretation      147
Ricci tensor, symmetry of      124
Riemann curvature endomorphism      117
Riemann curvature tensor      118
Riemann, G.F.B.      32
Riemannian connection      68—71
Riemannian covering      27
Riemannian distance      94
Riemannian geodesics      70
Riemannian isometry      112
Riemannian manifold      1 23
Riemannian metric      1 23
Riemannian normal coordinates      77
Riemannian submanifold      132
Riemannian submersion      45—46 89
Riemannian volume element      29
Right-invariant metric      46
Rigid motion      2 44
Robot arm      32
Rotation angle      156
Rotation angle of curved polygon      158 163
Rotation angle theorem      158
Rotation angle theorem for curved polygon      163
Round metric      33
S (scalar curvature)      124
s (shape operator)      140
scalar      139—140
Scalar curvature      124
Scalar curvature, geometric interpretation      148
Scalar second fundamental form      139
Scalar second fundamental form, geometric interpretation      140
Schoen, Richard      127
Secant angle function      159
Second Bianchi identity      123
Second countable      14
Second fundamental form      134
Second fundamental form, geometric interpretation      138 140
Second structure equation      128
Second variation formula      185
Section of a vector bundle      19
Section of a vector bundle, zero section      19
Sectional curvature      9 146
Sectional curvature of Euclidean space      148
Sectional curvature of hyperbolic spaces      148 151
Sectional curvature of spheres      148
Sectional curvature, constant      148
Sections, space of      19
Segment, curve      55
Semi-Riemannian metric      30
Semicolon between indices      55
Shape operator      140
Sharp (#)      28—29
Sides of a curved polygon      157
Sign conventions for curvature tensor      118
Signed curvature      4
Signed curvature of curved polygon      163
Simple curve      156
Singular Riemannian metric      31
Singularities of the exponential map      182
SL(2, R) (special linear group)      45
Slice coordinates      15
Smooth      14
Space forms      206—207
Special relativity      31
Speed of a curve      70
Sphere      33
Sphere theorem      203
Sphere, geodesic      76 106
Sphere, homogeneous and isotropic      34
Sphere, principal curvatures of      6
Spherical coordinates      82
SSS theorem      2
Standard coordinates on $\mathbf R_n$      25
Standard coordinates tangent bundle      19
Star-shaped      72 73
Stereographic projection      35
Stereographic projection is a conformal equivalence      36
Stereographic projection, hyperbolic      38
Stokes's theorem      157 165
Stress-energy tensor      126
Structure constants of Lie group      89
Structure equation, first      64
Structure equation, second      128
Sturm comparison theorem      194 208
Sturm separation theorem      208
SU(2) (special unitary group)      151
Sub-Riemannian metric      31
Subdivision of interval      92
Submanifold      15
Submanifold, embedded      15
Submanifold, immersed      15
Submanifold, regular      15
Submanifold, Riemannian      25 132
Submersion, Riemannian      45—46 89
Summation convention      13
Surface of revolution      25 87
Surface of revolution, Gaussian curvature      150
Surfaces in space      4
Sylvester's law of inertia      30
Symmetric 2-tensor      23
Symmetric connection      63 68
Symmetric product      24
Symmetries of Euclidean space      44 88
Symmetries of hyperbolic spaces      41—42 88
Symmetries of spheres      33—34 88
Symmetries of the curvature tensor      121
Symmetry lemma      97
Symplectic forms      116
Tangent angle function      156 157 163
Tangent bundle      17
Tangent space      15
Tangential acceleration      48
Tangential connection      66 135
Tangential projection      133
Tangential vector field along a curve      177
Tensor bundle      19
Tensor characterization lemma      21
Tensor contravariant      12
Tensor covariant      12
Tensor field      20
Tensor fields, space of      20
Tensor mixed      12
Tensor of type $\binom{k}{l}$      12
Tensor on a manifold      19
Tensor product      12
Theorema egregium      6 143
TM (tangent bundle)      17
Torsion 2-forms      64
Torsion tensor      63 68
Torus, n-dimensional      25 27
Total covariant derivative      54
Total covariant derivative, components of      55
Total curvature theorem      4 162 166
Total scalar curvature functional      126 127
Total space of a vector bundle      16
Totally awesome theorem      6 143
Totally geodesic      139
Trace of a tensor      13
Trace with respect to g      28
Transformation law for $\Gamma_{ij}^k$      63
Transition function      18
Translation, parallel      60—62
Transverse curves      96
Triangle, Euclidean      2
Triangle, geodesic      171
Triangle, ideal      171
Triangulation      166 171
Trivialization, local      16
Tubular neighborhood theorem      150
Two-point boundary problem      184
Umlaufsatz      158
Uniformization theorem      7
Uniformly normal      78
Uniqueness of constant curvature metrics      181
Unit radial vector field      77
Unit speed curve      70
Unit speed parametrization      93
Upper half-plane      7 45
Upper half-space      38
Upper indices on coordinates      15
Vacuum Einstein field equation      126
Variation, field      98
Variation, first      99
Variation, fixed-endpoint      98
Variation, of a geodesic      98
Variation, proper      98
Variation, second      185
Variation, through geodesics      174
Variational equation      101
Variations, calculus of      96
Vector bundle      16
Vector bundle, section of      19
Vector bundle, space of sections      19
Vector bundle, zero section      19
Vector field      19
Vector field along a curve      56
Vector field along an admissible family      96
Vector field, normal, along a curve      177
Vector field, piecewise smooth      93
Vector field, proper      98
Vector field, tangential, along a curve      177
Vector fields, commuting      121
Vector fields, space of      19
Vector space, tensors on      12
Velocity      48 56
Vertical index position      13
Vertical space      45
Vertical vector field      89
Vertices of a curved polygon      157
Volume      30
Volume element      29
Warner, Frank      169
Wedge product      14
Wedge product, alternative definition      14
Weingarten equation      136
Weingarten equation for Euclidean hypersurfaces      140
Wolf, Joseph      206
Yamabe problem      127
Zero section      19
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте