Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Riemannian Manifolds: an Introduction to Curvature

Автор: Lee J.M.

Аннотация:

This text is designed for a one-quarter or one-semester graduate course on Riemannian geometry. It focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced study of Riemannian manifolds. The book begins with a careful treatment of the machinery of metrics, connections, and geodesics, and then introduces the curvature tensor as a way of measuring whether a Riemannian manifold is locally equivalent to Euclidean space. Submanifold theory is developed next in order to give the curvature tensor a concrete quantitative interpretation. The remainder of the text is devoted to proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet's Theorem, and the characterization of manifolds of constant curvature. This unique volume will appeal especially to students by presenting a selective introduction to the main ideas of the subject in an easily accessible way. The material is ideal for a single course, but broad enough to provide students with a firm foundation from which to pursue research or develop applications in Riemannian geometry and other fields that use its tools.


Язык: en

Рубрика: Математика/Геометрия и топология/Дифференциальная геометрия/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1997

Количество страниц: 224

Добавлена в каталог: 19.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Flat ($\flat$)      27—29
Flat connection      128
Flat locally conformally      37
Flat Riemannian metric      24 119
Flatness criterion      117
Forms, bundle of      20
Forms, differential      20
Forms, exterior      14
Frame, local      20
Frame, orthonormal      24
Fubini — Study metric      46 204
Fubini — Study metric, curvature of      152
Functional, length      96
Functional, linear      11
Fundamental form, first      134
Fundamental form, second      134
Fundamental lemma of Riemannian geometry      68
Gauss equation      136
Gauss equation for Euclidean hypersurfaces      140
Gauss formula      135
Gauss formula along a curve      138
Gauss formula for Euclidean hypersurfaces      140
Gauss lemma      102
Gauss map      151
Gauss — Bonnet formula      164
Gauss — Bonnet theorem      7 167
Gauss — Bonnet, Chern — Gauss — Bonnet theorem      170
Gauss's Theorema Egregium      6 143
Gaussian curvature      6 142
Gaussian curvature, constant      7
Gaussian curvature, is isometry invariant      143
Gaussian curvature, of abstract 2-manifold      144
Gaussian curvature, of hyperbolic plane      145
Gaussian curvature, of spheres      142
General relativity      31 126
Generalized Cayley transform      40
Generating curve      87
Genus      169
Geodesic ball      76 106
Geodesic closed      76
Geodesic curvature      137
Geodesic equation      58
Geodesic polygon      171
Geodesic sphere      76 106
Geodesic triangle      171
Geodesic vector field      74
Geodesically complete      108
Geodesically complete, equivalent to metrically complete      108
Geodesics      8 58
Geodesics, are constant speed      70
Geodesics, are locally minimizing      106
Geodesics, existence and uniqueness      58
Geodesics, maximal      59
Geodesics, on Euclidean space      58 81
Geodesics, on hyperbolic spaces      83
Geodesics, on spheres      82
Geodesics, radial      78 105
Geodesics, Riemannian      70
Geodesics, with respect to a connection      58
Gradient      28
Gram — Schmidt algorithm      24 30 43 143 164
Graph coordinates      150
Great circles      82
Great hyperbolas      84
Green's identities      44
H (mean curvature)      142
h (scalar second fundamental form)      139
Hadamard, Cartan — Hadamard theorem      196
Half-cylinder, principal curvatures      5
Half-plane, upper      7
Half-space, Poincar?e      38
Harmonic function      44
Hausdorff      14
Hessian covariant      54 63
Hessian of length functional      187
Hicks, Cartan — Ambrose — Hicks theorem      205
Hilbert action      126
Homogeneous and isotropic      33
Homogeneous Riemannian manifold      33
Homotopy groups, higher      199
Hopf — Rinow theorem      108
Hopf, Heinz      158
Hopf, rotation angle theorem      158
Hopf, Umlaufsatz      158
Horizontal index position      13
Horizontal lift      45
Horizontal space      45
Horizontal vector field      89
Hyperbolic metric      38—41
Hyperbolic plane      7
Hyperbolic space      38—41
Hyperbolic stereographic projection      38
Hyperboloid model      38
Hypersurface      139
I(V, W) (index form)      187
Ideal triangle      171
Identification, $T_1^1(V)=\mathrm{End}(V)$      12
Identification, $T_{l+1}^k(V)$ with multilinear maps      12
II (second fundamental form)      134
Immersed submanifold      15
Immersion      15
Immersion, isometric      132
Index form      187
Index of a geodesic segment      189
Index of pseudo-Riemannian metric      30 43
Index position      13
Index raising and lowering      28
Index summation convention      13
Index upper and lower      13
Index upper, on coordinates      15
Induced metric      25
Inertia, Sylvester's law of      30
Inner automorphism      46
Inner product      23
Inner product on tensor bundles      29
Inner product on vector bundle      29
Integral of a function      30
Integral with respect to arc length      93
Integration by parts      43 88
Interior angle      2
Interior multiplication      43
Intrinsic property      5
Invariants, local      115
Inward-pointing normal      163
Isometric embedding      132
Isometric immersion      132
Isometric locally      115
Isometric manifolds      24
Isometries of Euclidean space      44 88
Isometries of hyperbolic spaces      41—42 88
Isometries of spheres      33—34 88
Isometry      5 24
Isometry group      24
Isometry group of Euclidean space      44 88
Isometry group of hyperbolic spaces      41—42 88
Isometry group of spheres      33—34 88
Isometry, group      See Isometry group
Isometry, local      115 197
Isometry, metric      112
Isometry, of M      24
Isometry, Riemannian      112
Isotropic at a point      33
Isotropic homogeneous and      33
Isotropy subgroup      33
Jacobi equation      175
Jacobi field      176
Jacobi field, comparison theorem      194
Jacobi field, existence and uniqueness      176
Jacobi field, in normal coordinates      178
Jacobi field, normal      177
Jacobi field, on constant curvature manifolds      179
Jumps in tangent angle      157
K (Gaussian curvature)      142
Kazdan, Jerry      169
Klingenberg, Walter      203
Kobayashi metric      32
Laplacian      44
Latitude circle      87
Law of inertia, Sylvester's      30
Left-invariant metric      46
Left-invariant metric, Christoffel symbols      89
Length functional      96
Length of a curve      92
Length of tangent vector      23
Lens spaces      206
Levi — Civita connection      68
Lie derivative      63
Linear connection      51
Linear functionals      11
Linear ODEs      60
Local coordinates      14
Local frame      20
Local frame, orthonormal      24
Local invariants      115
Local isometry      88 115 197
Local parametrization      25
Local trivialization      16
Local uniqueness of constant curvature metrics      181
Local-global theorems      2
Locally conformally flat      37
Locally conformally flat, hyperbolic space      41
Locally conformally flat, sphere      37
Locally minimizing curve      106
Lorentz group      41
Lorentz metric      30
Lowering an index      28
Main curves      96
Manifold, Riemannian      1 23
Maximal geodesic      59
Mean curvature      142
Meridian      82 87
Metric, Berger      151
Metric, bi-invariant      46 89 129 153
Metric, Caratheodory      32
Metric, Carnot — Caratheodory      31
Metric, comparison theorem      196
Metric, Einstein      125 202
Metric, Euclidean      25 33 45
Metric, fiber      29
Metric, Finsler      32
Metric, Fubini — Study      46 152 204
Metric, hyperbolic      38—41
Metric, induced      25
Metric, isometry      112
Metric, Kobayashi      32
Metric, Lorentz      30
Metric, Minkowski      31 38
Metric, on submanifold      25
Metric, on tensor bundles      29
Metric, product      26
Metric, pseudo-Riemannian      30 43
Metric, Riemannian      1 23
Metric, round      33
Metric, semi-Riemannian      30
Metric, singular Riemannian      31
Metric, space      94
Metric, sub-Riemannian      31
Minimal surface      142
Minimizing curve      96
Minimizing curve is a geodesic      100 107
Minimizing curve, locally      106
Minkowski metric      31 38
Mixed tensor      12
Model spaces      9 33
Morse index theorem      189 204
Multilinear over $C^\infty(M)$      21
Multiplicity of conjugacy      182
Myers's theorem      201
Nash embedding theorem      66
Naturality of the exponential map      75
Naturality of the Riemannian connection      70
NM (normal bundle)      132
Nondegenerate 2-tensor      30 116
Nonvanishing vector fields      115
Norm Finsler metric      32
Norm of tangent vector      23
Normal bundle      17 133
Normal coordinates, Riemannian      77
Normal form for commuting vector fields      121
Normal Jacobi field      177
Normal neighborhood      76
Normal neighborhood lemma      76
Normal projection      133
Normal space      132
Normal vector field along a curve      177
O(n+1) (orthogonal group)      33
O(n,1) (Lorentz group)      41
One-sided derivatives      55
One-sided velocity vectors      92
Order of conjugacy      182
Orientation, for curved polygon      157
Orthogonal      24
Orthogonal group      33
Orthonormal      24
Orthonormal, frame      24
Orthonormal, frame, adapted      43 133
Osculating circle      3 137
Pairing between V and $V^*$      11
Parallel translation      60—62 94
Parallel vector field      59 87
Parametrization by arc length      93
Parametrization of a surface      25
Parametrized curve      55
Partial derivative operators      15
Partition of unity      15 23
Path-lifting property      156 197
Pfaffian      170
Piecewise regular curve      92
Piecewise smooth vector field      93
Pinching theorems      203
Plane curve      3
Plane curve classification theorem      4
Plane section      145
Poincare ball      38
Poincare half-space      38
Polygon, curved      157 162
Polygon, geodesic      171
Positive definite      23
Positively oriented curved polygon      157 163
Principal curvatures      4 141
Principal directions      141
Product metric      26
Product rule for connections      50
Product rule for divergence operator      43
Product rule for Euclidean connection      67
Projection, hyperbolic stereographic      38
Projection, normal      133
Projection, of a vector bundle      16
Projection, stereographic      35
Projection, tangential      133
Projective space, complex      46
Projective space, real      148
Proper variation      98
Proper vector field along a curve      98
Pseudo-Riemannian metric      30
Pullback connection      71
R (curvature endomorphism)      117
Radial distance function      77
Radial geodesics      78
Radial geodesics are minimizing      105
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте