Авторизация
Поиск по указателям
Liu Q., Erne R. — Algebraic Geometry and Arithmetic Curves
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Algebraic Geometry and Arithmetic Curves
Авторы: Liu Q., Erne R.
Аннотация: This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularization (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the fundamental theorem of stable reduction of Deligne-Mumford. The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2002
Количество страниц: 463
Добавлена в каталог: 21.05.2007
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Dimension, of a ring 69
Dimension, of a topological space 68
Dimension, of a toric group 312
Dimension, of a unipotent group 306
Dimension, of fibers 137 154—156
Dimension, relative 240
Dimension, virtual relative 240
Discrete valuation ring 64 106
Discrete valuation ring, extension with prescribed residue field 517
Discrete valuation ring, linear equivalence 268
Discrete valuation ring, numerically effective 423
Discrete valuation ring, of poles 269
Discrete valuation ring, vertical 350
Discrete valuation ring, Weil 268
Discrete valuation ring, with normal crossings see “Normal crossings”
Discrete valuation ring, with strictly normal crossings 378
Discriminant 446
div(f), principal Cartier divisor associated to a rational function 256
div(s), Cartier divisor associated to a rational section of an invertible sheaf 266
Div(X), group of Cartier divisors 256
Divisor, horizontal 349
Domination, a ring dominating a subring 106
Domination, a scheme dominating another one 330
Dual graph of a curve 473 511
Duality 243—247 281
Duality, for global complete intersections 250
Dualizing sheaf 243 389
Dualizing sheaf, and birational morphisms 403
Dualizing sheaf, degree 282
Dualizing sheaf, of a semi-stable curve 509
Dualizing sheaf, of a stable curve 510—511
Dualizing sheaf, of the projective space 242
Dualizing sheaf, on the canonical model 440
Dynkin diagrams 476
Eisenstein polynomial 116
Elimination of indeterminacy 112 396
Elliptic curve 217 (see also “Hyperelliptic curve”)
Elliptic curve, differential forms 218
Elliptic curve, dualizing sheaf on the minimal regular model 423 447
Elliptic curve, filtration on the rational points 498
Elliptic curve, genus 280
Elliptic curve, group of components 497
Elliptic curve, has a hyperelliptic involution 288
Elliptic curve, integral equation 442
Elliptic curve, is an Abelian variety 491
Elliptic curve, minimal discriminant 447
Elliptic curve, minimal regular model 447
Elliptic curve, minimal Weierstrass model 447 449
Elliptic curve, Neron model 494
Elliptic curve, potential semi-stable reduction 501
Elliptic curve, reduction of the minimal regular model 485
Elliptic curve, Weierstrass equation 442
Elliptic curve, Weierstrass model 442 445
Elliptic equation 296
Embedded point 254
End vertex 471
Equidimensional 138 154 234 335
Etale, homomorphism 139
Etale, morphism 139—141 153 176 225
Etale, quasi-section 227
Etale, standard 153
Etale, topology 223
Euler — Poincare characteristic 205 278
Exact sequence 4
Excellent ring 342—344
Excellent scheme 342—347 361—362
Exceptional divisor 412 416—417
Exceptional locus 272 397 411
Extension of morphisms from a normal scheme to a proper scheme 119
Extension of scalars 3
Extension, purely inseparable 89—90 105 214
Extension, separable 89 215 226 342
Exterior algebra 236
f*D, inverse image of a Cartier divisor 262
Fermat curve 550
Fiber of a morphism 83
Fibered product 78
Fibered product, universal property 78
Fibered surface, minimal 418
Fibered surface, normal 347
Fibered surface, over a Dedekind scheme 347
Fibered surface, regular 347
Fibered surface, relatively minimal 418
Fibered surface, the set of regular points of a 343
Field, finitely generated 77
Filtration 16 20 498
Flat homomorphism 6
Flatness 6—15 137 144 144—146 176 207 235 346 347
Flatness, is a local property 10
Flatness, of a quotient algebra 14 139
Flatness, over a Dedekind domain 11
Flatness, over a Dedekind scheme 137
Formal completion 18—24 344
Formal completion, and action of a group 146
Formal completion, does not change the dimension 132
Formal completion, of a local ring of a semi-stable curve 512
Formal completion, of a regular local ring is regular 132
Formal completion, of a semi-local ring 146
Formal completion, of a topological group 17
Formal fiber 341 469—482
Formal functions (theorem on) 200
Formal group 482
Formal power series 18
Frac(A), total ring of fractions 255
Frobenius 94—99 301 394
Frobenius, absolute 94
Frobenius, and differentials 226
Frobenius, and flatness 145
Frobenius, and semi-stable curves 532
Frobenius, is purely inseparable 207
Frobenius, relative 94
Function field 66 77 277
Function, meromorphic 255
Function, rational 66
Fundamental divisor 436—438 450
g(X), genus of a smooth projective curve 279
Generic fiber 83 347
Genus 282
Genus, arithmetic 279 393
Genus, geometric 279
Geometric multiplicity 392 409
Geometrically connected 90—98 105 155 201 208 350—351 496
Geometrically integral 90—98 144 369
Geometrically irreducible 90—98 421
Geometrically reduced 90—98 105 131 209 369
Geometrically regular 342
Germ see “Section”
Glueing, morphisms 40
Glueing, schemes 49
Glueing, sheaves 40
Going-down Theorem 545
Good reduction 462—464 479 502 545
Good reduction, potential 465 505 548 551
Grading 20
Graph 471 (see also “Dual graph”)
Graph, branch in a graph 476
Graph, of a birational map 112
Graph, of a morphism 110
Graph, of a rational map 111
Grothendieck's vanishing theorem 188
Group of components 496 538 541 554
Group scheme 297—299 302
Group scheme, additive 298
Group scheme, commutative 298
Group scheme, multiplicative 298
Group scheme, toric 312
Group scheme, unipotent 306 316
Group, divisible 538
Group, uniquely -divisible 538
Height 69—72 76 332 337
Henselian discrete valuation ring 360 410 467—469
Henselian ring 360
Henselization 360
Higher direct image 189 204 208
Hilbert polynomial 284
Hodge index theorem 383
Homogeneous algebra 53
Homogeneous coordinates 53
Homogeneous element 20
Homogeneous ideal 50
Homomorphism, finite 29
Homomorphism, integral 29 33 69
Homomorphism, local 37
Horizontal divisor 349
ht(I), height of an ideal I 69
Hurwitz formula 289
Hyperelliptic curve 287 292
Hyperelliptic curve, bad reduction 466 480
Hyperelliptic curve, equation 296
Hyperelliptic curve, good reduction 464 480
Hyperelliptic curve, involution 294
I-adic topology 16
Idempotent 66
Identity component 496 504
Immersion 96 200
Immersion, closed 38 45 113
Immersion, open 38 45
Index of a curve 393
Inertia group 147 526 532
Integral closure 120 330 340 345
Integral equation 29
Intersection number 376 383
Inverse limit 16
Inverse limit, universal property 16
Inverse system 16
Irreducible component 62—63 97
Irreducible component, geometric 97
Isomorphism and base change 194
j(E), modular invariant of an elliptic curve 500
Jacobian conjecture 134
Jacobian criterion 130 134 147
Jacobian criterion, for projective varieties 134
Jacobian matrix 130
Jacobian variety 299 504 542
Jordan — Holder theorem 258
K(X), field of rational functions 66
k(x), residue field at a point x 37
Kahler differentials see “Relative differential forms”
Klein curve 479 551
Krull's principal ideal theorem 71
Krull's theorem on the intersection of submodules 21
l(D), dimension of L(D) 279
L(D), global sections of 279
l.c.i. see “Local complete intersection”
Leibniz rule 210
Length, of a module 258—259 262—265 274
Length, of a path 472
Leray acyclicity theorem 183
Lifting, infinitesimal 225
Lifting, of a closed point 468
Lifting, of rational points 224
Lifting, of the formal structure 235
Local complete intersection 232 338 339 438 451 510
Local ring 9
localization 9
Luroth's theorem 292
Meromorphic functions 255
Mittag — Leffler condition 24
Model 456
Model, minimal regular 418 422 455
Model, morphism 418 455
Model, of 482 (see also “Conic”)
Model, of a surface 418
Model, of algebraic curves 455
Model, regular 455
Model, relatively minimal 418
Model, smooth 455
Model, with normal crossings 455 456 503 534 552
Modular curve 551
Modular invariant 500
Module, Artinian 259
Module, Cohen-Macaulay 337 346
Module, differential 178
Module, faithful 122
Module, faithfully flat 13
Module, flat 6 11 193
Module, graded 20 164
Module, of relative differential forms see “Relative differential forms”
Module, simple 213 258 264
Module, torsion-free 8
Monoidal transformation 395
Mor(X, Y), set of morphisms from X to Y 47
Morphism, closed 103
Morphism, constant 137
Morphism, diagonal 100 216
Morphism, dominant 67 86 98 278
Morphism, faithfully flat 145
Morphism, finite 112—113 155 176 194 246 301
Morphism, finite and birational 362
Morphism, flat 136—139 145
Morphism, generically etale 227
Morphism, generically separable 227 249
Morphism, integral 112 120 545
Morphism, into a projective scheme 57 169
Morphism, into an affine scheme 48 57
Morphism, l.c.i. see “Local complete intersection”
Morphism, of finite type 87 96 96—110
Morphism, of projective schemes 53
Morphism, of schemes 45
Morphism, open 58 145
Morphism, projection 78
Morphism, projective 83 108
Morphism, proper 103—107 110—112 194
Morphism, proper birational 150 371 373 408
Morphism, purely inseparable 200 207 207—208 291 419 532
Morphism, quasi-compact 58 67 96 163 188
Morphism, quasi-finite 97 140 152 155
Morphism, quasi-projective 109 112 152 155
Morphism, quotient 41 146
Morphism, ramified 290 294
Morphism, separable 289
Morphism, separated 100—102
Morphism, structural 47
Morphism, tamely ramified 290 300
Morphism, universally closed 103
Moving Lemma 379 380 391 429
Multiplicative subset 9
Multiplicity, intersection multiplicity 376
Multiplicity, of a Cartier divisor 260
Multiplicity, of a cycle 267
Multiplicity, of a hypersurface at a point 402
Multiplicity, of an irreducible component 305 352 368 392
Nagata ring 340—341 343 371—372
Nagata scheme 341 356 362
Nakayama's lemma 9
Neron model 489 494 504
Neron model, universal property 490
Neron — Ogg — Shafarevich's criterion 502
Nilpotent 28 32
Nilradical 31 60
Node in a graph 475
Noether's normalization lemma 29 155
Norm 77 272—274
Normal crossings 378 391 474
Normal crossings, strictly 378
Normal law 493
Normal ring 115—123 130 133 273 344
Normal scheme 115—126 130—131 152 201 269 339 545
Normalization 119—126 303 343 373 534
Normalization, and arithmetic genus 304
Реклама