Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Mitsumi S., Sturmfels B., Takayama N. — Groebner Deformations of Hypergeometric Differential Equations, Algorithms and Computation in Mathematics, Volume 6
Mitsumi S., Sturmfels B., Takayama N. — Groebner Deformations of Hypergeometric Differential Equations, Algorithms and Computation in Mathematics, Volume 6



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Groebner Deformations of Hypergeometric Differential Equations, Algorithms and Computation in Mathematics, Volume 6

Авторы: Mitsumi S., Sturmfels B., Takayama N.

Аннотация:

In recent years, new algorithms for dealing with rings of differential operators have been discovered and implemented. A main tool is the theory of Groebner bases, which is reexamined here from the point of view of geometric deformations. Perturbation techniques have a long tradition in analysis; Groebner deformations of left ideals in the Weyl algebra are the algebraic analogue to classical perturbation techniques. The algorithmic methods introduced here are particularly useful for studying the systems of multidimensional hypergeometric PDEs introduced by Gelfand, Kapranov and Zelevinsky. The Groebner deformation of these GKZ hypergeometric systems reduces problems concerning hypergeometric functions to questions about commutative monomial ideals, and leads to an unexpected interplay between analysis and combinatorics. This book contains a number of original research results on holonomic systems and hypergeometric functions, and raises many open problems for future research in this area.


Язык: en

Рубрика: Математика/Анализ/Специальные функции/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2000

Количество страниц: 272

Добавлена в каталог: 15.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Shelling monomials      143
Shelling solution basis      144
Simplicial complex      113 114
Sing(f)      see “Singular locus”
Singular locus      36
Small Grobner fan      60 236
Small universal Grobner basis      59
Solution to I      2 35
sp(f, g)      see “S-pair”
Square-free initial ideal      43 139
Stability (of holonomicity)      203
Standard monomial      9 38 73 110
Standard pair      109
Standard representation      7 13 15
Stanley — Reisner ideal      50 113 114
Starting monomial      23 26 92
Stokes’ Theorem      219
Strongly convex      93
Support of fan      52
Support of monomial      10
Syzygy      217
T(M) (top-dimensional standard pairs)      112
Term order      5 11 89
top(J)      112
Top-dimensional standard pairs      112 187
Toric ideal      43 49 104
Torus      66
Torus-fixed      67
Torus-invariant      67
Total degree      11
Twisted cohomology group      226
Twisted homology group      226
Unimodular      139
Unimodular cone      86
Universal Grobner basis      58
V-homogenization      16
Volume      see “Normalized volume”
Volume, polynomial      147
w-flat      187
Weight, (u, v)-weight      14 200
Weight, vector      4 11
Weight, w-weight      67 89
Weyl algebra      2
Zero-dimensional ideal      29 33 152
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте