Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Martin K. — Digital Integrated Circuit Design
Martin K. — Digital Integrated Circuit Design



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Digital Integrated Circuit Design

Àâòîð: Martin K.

Àííîòàöèÿ:

The impact of digital integrated circuits on our modern society has been pervasive. They are the enabling technology of the current computer and information-technology revolution. This is largely true because of the immense amount of signal and computer processing that can be realized in a single integrated circuit; modern IC's may contain millions of logic gates. This text book is intended to take a reader having only a minimal background and knowledge in electronics to the point where they can design state-of-the-art digital integrated circuits.

Designing high-performance digital integrated circuits requires expertise in many different areas. These include semiconductor physics, integrated circuit processing, transistor-level design, logic-level design, system-level design, testing, etc. Aspects of these topics are covered throughout this text, although the emphasis is on transistor-level design of digital integrated circuits and systems. This is in contrast to the perspective in many other texts, which takes a system-level or VLSI approach where transistor-level details are minimized. It is the author's belief that before system-level considerations can be properly evaluated, an in-depth tranisistor-level understanding must first be obtained. Important system-level considerations such as timing, pipe-lining, clock distribution, and system building blocks are covered in detail, but the emphasis on transistors first. Throughout the book, physical and intuitive explanations are given, and although mathematical quantitative analysis of many circuits have necessarily been presented, Martin has attempted not to "miss seeing the forest because of the trees". Thisbook presents the critical underlying concepts without becoming entangled in tedious and over-complicated circuit analyses. It is intended for senior/graduate level students in electrical and computer engineering. This course assumes the Sedra/Smith Microelectronic Circuits course as a prerequisite.

* Strong emphasis on intuitive physical examples
* Emphasizes conceptual thinking over detailed circuit analysis techniques
* Transistor level details are presented before system considerations


ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2000

Êîëè÷åñòâî ñòðàíèö: 543

Äîáàâëåíà â êàòàëîã: 16.03.2007

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Junction capacitance, MOS circuits      261—264
Junction capacitance, reverse-bias diode      74
Junctions, forward-biased junctions      83—85
Junctions, graded junctions      78—79
Junctions, implanting      44—45
Large-signal capacitance      80—81
Large-signal modeling, BJT transistors      113—114
Large-signal modeling, MOS transistors      95—97
Latch-up      106—108 200
Latches, biphase      290 344
Latches, current-mode logic latches      344
Latches, dynamic CMOS latches      293—294
Latches, inverted      286
Latches, static CMOS digital latches      285—291
Layout CMOS      48—59
LDD      see "Lightly doped drain transistor"
Leakage currents, MOS transistors      106
Leakage currents, transmission gates      247
Level-boosted word lines      463—464
Level-sensitive scan design (LSSD)      512—517
LFSR      see "Maximal-length linear-feedback shift register"
Lightly doped drain (LDD) transistor      55—61
Linear-feedback shift register (LFSR)      518—521
Lockout      407
Logic family, delay times      23—24
Logic family, noise margins      22—23
Logic family, rise and Call time      23—24
Logic family, threshold voltage      21—22
Logic gales, acyclic      284
Logic gales, BiCMOS      351—355
Logic gales, BiCMOS differential cascade-voltage-switch logic gate (DCVSL)      357
Logic gales, bipolar      324—325
Logic gales, CMOS      8—14 22 169 252—256
Logic gales, current-mode logic gales      335—344
Logic gales, cyclic      284
Logic gales, Domino logic gales      373—377
Logic gales, dynamic gates      500—502
Logic gales, emitter-coupled logic gates      325—333
Logic gales, gate capacitance      260—271
Logic gales, MOS      169 260—274
Logic gales, NMOS      2—8 86 169 183
Logic gales, pseudo-NMOS      169 183—184
Logic gales, synchronous      284
Logic gales, transient response      25—29
Logic gales, transmission gates      2 37—252
Logic, acyclic      427 512 513
LSSD      see "Level-sensitive scan design"
Mask-programmed ROM      464—467
Masking      37 40
Masks, layout      49—51
Master clock distribution, synchronous logic circuits      309—312
Master-slave flip-flop      346 511
Maximal-length linear-feedback shift register (LFSR)      518—521
Maximum-length sequence generator      407
Memory cells, dynamic RAM      459—460
Memory cells, four-transistor memory cell      442
Memory cells, sensing OM cells      467—470
Memory cells, static RAM      440—452
Memory, address buffers      452—455
Memory, decoders      438 452—455
Memory, dynamic random-access memory (DRAM)      458—464
Memory, electrically programmable ROM (BPROM)      438 465 471—475
Memory, random-access memory (RAM)      291—293 437 438 438—452 457—464
Memory, read-only memory (ROM)      437 438 464—478
Memory, sequential memory      437
Memory, static random-access memory (SRAM)      291—293 438—452 457—458
Memory, writable ROM (WROM)      465
MESFBTs, alloys      485
MESFBTs, back-gating      489
MESFBTs, buffered-FET logic (BFL)      491—493 503
MESFBTs, capacitively coupled Domino logic (CCDL)      500—502
MESFBTs, capacitively enhanced logic (CEL)      493—495 503
MESFBTs, direct-coupled logic (DCL)      495—498 503
MESFBTs, dynamic logic gates      500—502
MESFBTs, hysteresis      489—490
MESFBTs, modeling      487—489
MESFBTs, Schottky metal      485
MESFBTs, second-order effects      489—490
MESFBTs, source-coupled logic (SCL)      498—500 503
MESFBTs, two-phase dynamic FFT logic (TDFL)      500—503
Miller capacitor      140
Minority charge      114
Mixed-mode microcircuits, processing      47
MNMOS transistors      478
Modeling, bipolar-junction transistors (BJT)      69—71 113—114 116—118 148—155 167—168
Modeling, constants      163
Modeling, diodes      126—127 163—164
Modeling, MESFETs      487—489
Modeling, MOS transistors      66—69 95—97 100—108 133—145 164—166
Modeling, RC ladder structure      267—270
Moderate inversion      95
Modified Booth multipliers      422—426
MOS circuits, delay in      260—274
MOS circuits, gate capacitance      260—261
MOS circuits, interconnect capacitance      265—267
MOS circuits, junction capacitance      261—264
MOS design      169
MOS design, CMOS gate design      212—220
MOS design, CMOS logic      169 200—212
MOS design, pseudo-NMOS logic      169—181 196
MOS design, pseudo-NMOS logic gates      169 183—184 187 191
MOS design, SPICE simulations      220—229
MOS design, transistor equivalency      184—200
MOS logic gates      169 260—274
MOS modeling, large-signal modeling      95—97
MOS modeling, latch-up      106—108
MOS modeling, leakage currents      106
MOS modeling, scaling      102—104
MOS modeling, short-channel effects      104—105
MOS modeling, small-signal modeling      100—101 133—145
MOS modeling, subthreshold operation      105—106
MOS transistors      86—87
MOS transistors, body effect      98—99 130
MOS transistors, depletion transistors      86 88 99
MOS transistors, large-signal modeling      95—97
MOS transistors, latch-up      106—108
MOS transistors, leakage currents      106
MOS transistors, modeling      66—69 95—97 100—108 133—145 164—166
MOS transistors, n-channel transistors      86—87 88 98 100
MOS transistors, operation      89—95
MOS transistors, p-channel transistors      88 99
MOS transistors, small-signal modeling      100—101 133—145 164 165 175
MOS transistors, SPICE modeling parameters      119—120
MOS transistors, subthreshold region      105—106
MOS transistors, symbols for      88—89
MOS transistors, threshold voltage      128—130
MOS transistors, triode region      164
MOS transistors, triode relationship      130—133
Multiple-output Domino logic gates      376—377
Multiplexors      398—400
Multipliers      see "Digital multipliers"
n-channel transistors      66 67
n-channel transistors, MOS transistors      86—87 88 98 100
n-channel transistors, pass transistors      245
n-channel transistors, transmission gale      237 238
n-channel transistors, X gates      242
n-channel X gates, logic      246—247
n-channel X gates, voltage drop      242—246
Nagel, Dr.L.      15
NAND architecture, EPROMs      475—477
nand gate, CMOS      12
nand gate, NMOS      5—6
Native transistor threshold voltage      129
Negative photoresist      38
NMOS depletion-load transistors      198—200
NMOS logic      183 198 199
NMOS logic gates      2—8 86 169 183
NMOS logic gates, logic functions      190—194
NMOS logic with depletion-load transistors      198—200
No-race (NORA) logic      377—380
No-race (NORA) logic, differential NORA logic      390
Noise margins      22—23
nor gate, CMOS      11
npn bipolar transistors      69
On-chip inductors      486—487
Output circuits      275
p-channel transistors      66 67
p-channel transistors, MOS transistors      88 99
p-channel transistors, pseudo-NMOS logic      170—171
p-channel transistors, symbols for      88—89
P-SPICE      15
Parallel termination      332
Parasitic bipolar transistor      107
Parasitic capacitance, bonding pads      278
Parasitic capacitance, SPICE modeling      120
Pass transistor      237
photolithography      36
photoresist      38 40 45
Pinch-off      93 95—96
Pipelined systems, synchronous logic circuits      305—306
Plas      see "Programmable logic arrays"
Pn junction      72
pnp bipolar transistors      69
Polysilicon gate      87 128
Polysilicon gate, formation      43—44
Polysilicon gate, layout      49—51
Positive photoresist      38 40
Power dissipation, CMOS inverter      209—212
Power dissipation, pseudo-NMOS gates      195—197 367
Power-delay product      103
Programmable logic arrays (PLAs)      427
Programmable logic arrays (PLAs), pseudo-NMOS PLAs      427—429
Programmable logic arrays (PLAs), self-timed dynamic PLAs      429—431
Programmable logic arrays (PLAs), two-phase PLAs      431—433
Programmable Read-only Memory (PROM)      470—475
Programmable read-only memory (PROM), electrically erasable EPROMs (EEPROMs)      474—475 477
Programmable read-only memory (PROM), electrically programmable (EPROM)      438 465 471—475
Programmable read-only memory (PROM), flash EPROMs      474 475 477
Propagate function      410
Pseudo-NMOS inverter      171—172
Pseudo-NMOS inverter, fall lime      180—182
Pseudo-NMOS inverter, gate threshold voltage      175—178
Pseudo-NMOS inverter, rise time      179—180
Pseudo-NMOS inverter, small-signal modeling      175—177
Pseudo-NMOS inverter, transient response      179
Pseudo-NMOS inverters, SPICE simulations      178 220—225
Pseudo-NMOS loads      365—367 398
Pseudo-NMOS logic      169—182 196 453
Pseudo-NMOS logic gates      169 183—184 187 191—197
Pseudo-NMOS logic gates, bias voltage      197
Pseudo-NMOS logic gates, complex      191—192
Pseudo-NMOS logic gates, power dissipation      195—197 367
Pseudo-NMOS logic gates, transistor size      195
Pseudo-NMOS logic, disadvantages      366 367
Pseudo-NMOS PLAs      427—429
Pseudo-random noise generator      407
Q-factors      511
Q-V curve      76
Quasi constant scaling      104
RAM      see "Random access memory"
Random access memory (RAM), dynamic (DRAM)      458—463
Random access memory (RAM), static (SRAM)      291—293 438—452 457—458
Random-access LSSD      518
Random-access scan      518
Ratioed gates      11 511
Ratioless gates      11
RC approximate modeling, transient responses      29—31 260
RC ladder structure      267—270
Reactive ion etching (RIE)      59
Reactive plasma etching      44
Read-only memory (ROM)      464—465
Read-only memory (ROM), charge pumps      477—478
Read-only memory (ROM), electrically programmable ROM (EPROM)      438 465 471—475
Read-only memory (ROM), fusible-link ROM      465
Read-only memory (ROM), mask-programmed ROM      464—467
Read-only memory (ROM), NAND architecture      475—477
Read-only memory (ROM), programmable read-only memory (PROM)      470—475
Read-only memory (ROM), writable ROM (WROM)      465
Regenerative differential logic      390—393
Register-based controllers      317—320
Resistor equivalency      188—189
Reverse-biased diodes      74—78
Reverse-biased diodes, modeling equations      163
RIE      see "Reactive ion etching"
Ripple counter      405
Ripple-carry adder      339
Ripple-carry adders      412
Rise and fall time      23—24
Rise time      23—24
Rise time, pseudo-NMOS inverter      179—180
Row decoder      439
Saturation region      94
SBFL      see "Superbuffer FET logic"
Scale current      112
Scaling, MOS transistors      102—104
Scan-design techniques      511—518
Scan-path design      517
Scan/Set testing      517—518
Schottky diodes      72 85—86
Schottky diodes, GaAs digital circuits      486
SCL      see "Source-coupled logic"
Second-order effects, MESFETs      489—490
Self-timed dynamic PLAs      429—431
Semiconductors, defined      71
Semiconductors, diodes      72—74
Semiconductors, forward-biased junctions      93—95
Semiconductors, graded junctions      78—79
Semiconductors, large-signal junction capacitance      80—83
Semiconductors, reversed-biased diodes      74—78
Semiconductors, Schottky diodes      72 85—86
Sense amplifier, DRAM      461—463
Sense amplifier, SRAM      449—452
Sensing read-only memory      467—470
Sequential memory      437
Serial-carry counter      406
Series resistance      118
Series termination      332
Shared junction      53 54
Short-channel effects      97
Short-channel effects, MOS transistors      104—105
Sidewall capacitance      262
Signature analysis      518 521—522
Silicon JFETs      487—489
Silicon wafer, fabrication      36
Silicon-controlled rectifier (SCR)      107
Simulation      14—19
Single-bit adders      408—412
Single-ended current-mode logic      346—349
Single-phase dynamic logic      380—382
Single-sided diode      75
Small-signal modeling, active region      165—166
Small-signal modeling, bipolar-junction transistors (BJT)      116—118 148—155
Small-signal modeling, CMOS inverter      202—204
Small-signal modeling, forward-biased diode      126—127
Small-signal modeling, MOS transistors      100—101 133—145 164 165 175
Small-signal modeling, pseudo-NMOS inverter      175—177
Source capacitance      140
Source-coupled logic (SCL)      498—500 503
spacer      48
SPICE simulations      15—19 53
SPICE simulations, capacitance      273—274
SPICE simulations, carry-generate circuits      341—342
SPICE simulations, CML carry-generate circuit      358
SPICE simulations, CML latch      359—360
SPICE simulations, CMOS inverter      199 225—229
SPICE simulations, H-SPICE      15 119
SPICE simulations, memory cell      448—449
SPICE simulations, modeling parameters      118—122
SPICE simulations, MOS transistors      176n
SPICE simulations, n-chunnel transistor      97—98 156—158
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå