Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Martin K. — Digital Integrated Circuit Design
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Digital Integrated Circuit Design
Àâòîð: Martin K.
Àííîòàöèÿ: The impact of digital integrated circuits on our modern society has been pervasive. They are the enabling technology of the current computer and information-technology revolution. This is largely true because of the immense amount of signal and computer processing that can be realized in a single integrated circuit; modern IC's may contain millions of logic gates. This text book is intended to take a reader having only a minimal background and knowledge in electronics to the point where they can design state-of-the-art digital integrated circuits.
Designing high-performance digital integrated circuits requires expertise in many different areas. These include semiconductor physics, integrated circuit processing, transistor-level design, logic-level design, system-level design, testing, etc. Aspects of these topics are covered throughout this text, although the emphasis is on transistor-level design of digital integrated circuits and systems. This is in contrast to the perspective in many other texts, which takes a system-level or VLSI approach where transistor-level details are minimized. It is the author's belief that before system-level considerations can be properly evaluated, an in-depth tranisistor-level understanding must first be obtained. Important system-level considerations such as timing, pipe-lining, clock distribution, and system building blocks are covered in detail, but the emphasis on transistors first. Throughout the book, physical and intuitive explanations are given, and although mathematical quantitative analysis of many circuits have necessarily been presented, Martin has attempted not to "miss seeing the forest because of the trees". Thisbook presents the critical underlying concepts without becoming entangled in tedious and over-complicated circuit analyses. It is intended for senior/graduate level students in electrical and computer engineering. This course assumes the Sedra/Smith Microelectronic Circuits course as a prerequisite.
* Strong emphasis on intuitive physical examples
* Emphasizes conceptual thinking over detailed circuit analysis techniques
* Transistor level details are presented before system considerations
ßçûê:
Ðóáðèêà: Òåõíîëîãèÿ /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2000
Êîëè÷åñòâî ñòðàíèö: 543
Äîáàâëåíà â êàòàëîã: 16.03.2007
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Junction capacitance, MOS circuits 261—264
Junction capacitance, reverse-bias diode 74
Junctions, forward-biased junctions 83—85
Junctions, graded junctions 78—79
Junctions, implanting 44—45
Large-signal capacitance 80—81
Large-signal modeling, BJT transistors 113—114
Large-signal modeling, MOS transistors 95—97
Latch-up 106—108 200
Latches, biphase 290 344
Latches, current-mode logic latches 344
Latches, dynamic CMOS latches 293—294
Latches, inverted 286
Latches, static CMOS digital latches 285—291
Layout CMOS 48—59
LDD see "Lightly doped drain transistor"
Leakage currents, MOS transistors 106
Leakage currents, transmission gates 247
Level-boosted word lines 463—464
Level-sensitive scan design (LSSD) 512—517
LFSR see "Maximal-length linear-feedback shift register"
Lightly doped drain (LDD) transistor 55—61
Linear-feedback shift register (LFSR) 518—521
Lockout 407
Logic family, delay times 23—24
Logic family, noise margins 22—23
Logic family, rise and Call time 23—24
Logic family, threshold voltage 21—22
Logic gales, acyclic 284
Logic gales, BiCMOS 351—355
Logic gales, BiCMOS differential cascade-voltage-switch logic gate (DCVSL) 357
Logic gales, bipolar 324—325
Logic gales, CMOS 8—14 22 169 252—256
Logic gales, current-mode logic gales 335—344
Logic gales, cyclic 284
Logic gales, Domino logic gales 373—377
Logic gales, dynamic gates 500—502
Logic gales, emitter-coupled logic gates 325—333
Logic gales, gate capacitance 260—271
Logic gales, MOS 169 260—274
Logic gales, NMOS 2—8 86 169 183
Logic gales, pseudo-NMOS 169 183—184
Logic gales, synchronous 284
Logic gales, transient response 25—29
Logic gales, transmission gates 2 37—252
Logic, acyclic 427 512 513
LSSD see "Level-sensitive scan design"
Mask-programmed ROM 464—467
Masking 37 40
Masks, layout 49—51
Master clock distribution, synchronous logic circuits 309—312
Master-slave flip-flop 346 511
Maximal-length linear-feedback shift register (LFSR) 518—521
Maximum-length sequence generator 407
Memory cells, dynamic RAM 459—460
Memory cells, four-transistor memory cell 442
Memory cells, sensing OM cells 467—470
Memory cells, static RAM 440—452
Memory, address buffers 452—455
Memory, decoders 438 452—455
Memory, dynamic random-access memory (DRAM) 458—464
Memory, electrically programmable ROM (BPROM) 438 465 471—475
Memory, random-access memory (RAM) 291—293 437 438 438—452 457—464
Memory, read-only memory (ROM) 437 438 464—478
Memory, sequential memory 437
Memory, static random-access memory (SRAM) 291—293 438—452 457—458
Memory, writable ROM (WROM) 465
MESFBTs, alloys 485
MESFBTs, back-gating 489
MESFBTs, buffered-FET logic (BFL) 491—493 503
MESFBTs, capacitively coupled Domino logic (CCDL) 500—502
MESFBTs, capacitively enhanced logic (CEL) 493—495 503
MESFBTs, direct-coupled logic (DCL) 495—498 503
MESFBTs, dynamic logic gates 500—502
MESFBTs, hysteresis 489—490
MESFBTs, modeling 487—489
MESFBTs, Schottky metal 485
MESFBTs, second-order effects 489—490
MESFBTs, source-coupled logic (SCL) 498—500 503
MESFBTs, two-phase dynamic FFT logic (TDFL) 500—503
Miller capacitor 140
Minority charge 114
Mixed-mode microcircuits, processing 47
MNMOS transistors 478
Modeling, bipolar-junction transistors (BJT) 69—71 113—114 116—118 148—155 167—168
Modeling, constants 163
Modeling, diodes 126—127 163—164
Modeling, MESFETs 487—489
Modeling, MOS transistors 66—69 95—97 100—108 133—145 164—166
Modeling, RC ladder structure 267—270
Moderate inversion 95
Modified Booth multipliers 422—426
MOS circuits, delay in 260—274
MOS circuits, gate capacitance 260—261
MOS circuits, interconnect capacitance 265—267
MOS circuits, junction capacitance 261—264
MOS design 169
MOS design, CMOS gate design 212—220
MOS design, CMOS logic 169 200—212
MOS design, pseudo-NMOS logic 169—181 196
MOS design, pseudo-NMOS logic gates 169 183—184 187 191
MOS design, SPICE simulations 220—229
MOS design, transistor equivalency 184—200
MOS logic gates 169 260—274
MOS modeling, large-signal modeling 95—97
MOS modeling, latch-up 106—108
MOS modeling, leakage currents 106
MOS modeling, scaling 102—104
MOS modeling, short-channel effects 104—105
MOS modeling, small-signal modeling 100—101 133—145
MOS modeling, subthreshold operation 105—106
MOS transistors 86—87
MOS transistors, body effect 98—99 130
MOS transistors, depletion transistors 86 88 99
MOS transistors, large-signal modeling 95—97
MOS transistors, latch-up 106—108
MOS transistors, leakage currents 106
MOS transistors, modeling 66—69 95—97 100—108 133—145 164—166
MOS transistors, n-channel transistors 86—87 88 98 100
MOS transistors, operation 89—95
MOS transistors, p-channel transistors 88 99
MOS transistors, small-signal modeling 100—101 133—145 164 165 175
MOS transistors, SPICE modeling parameters 119—120
MOS transistors, subthreshold region 105—106
MOS transistors, symbols for 88—89
MOS transistors, threshold voltage 128—130
MOS transistors, triode region 164
MOS transistors, triode relationship 130—133
Multiple-output Domino logic gates 376—377
Multiplexors 398—400
Multipliers see "Digital multipliers"
n-channel transistors 66 67
n-channel transistors, MOS transistors 86—87 88 98 100
n-channel transistors, pass transistors 245
n-channel transistors, transmission gale 237 238
n-channel transistors, X gates 242
n-channel X gates, logic 246—247
n-channel X gates, voltage drop 242—246
Nagel, Dr.L. 15
NAND architecture, EPROMs 475—477
nand gate, CMOS 12
nand gate, NMOS 5—6
Native transistor threshold voltage 129
Negative photoresist 38
NMOS depletion-load transistors 198—200
NMOS logic 183 198 199
NMOS logic gates 2—8 86 169 183
NMOS logic gates, logic functions 190—194
NMOS logic with depletion-load transistors 198—200
No-race (NORA) logic 377—380
No-race (NORA) logic, differential NORA logic 390
Noise margins 22—23
nor gate, CMOS 11
npn bipolar transistors 69
On-chip inductors 486—487
Output circuits 275
p-channel transistors 66 67
p-channel transistors, MOS transistors 88 99
p-channel transistors, pseudo-NMOS logic 170—171
p-channel transistors, symbols for 88—89
P-SPICE 15
Parallel termination 332
Parasitic bipolar transistor 107
Parasitic capacitance, bonding pads 278
Parasitic capacitance, SPICE modeling 120
Pass transistor 237
photolithography 36
photoresist 38 40 45
Pinch-off 93 95—96
Pipelined systems, synchronous logic circuits 305—306
Plas see "Programmable logic arrays"
Pn junction 72
pnp bipolar transistors 69
Polysilicon gate 87 128
Polysilicon gate, formation 43—44
Polysilicon gate, layout 49—51
Positive photoresist 38 40
Power dissipation, CMOS inverter 209—212
Power dissipation, pseudo-NMOS gates 195—197 367
Power-delay product 103
Programmable logic arrays (PLAs) 427
Programmable logic arrays (PLAs), pseudo-NMOS PLAs 427—429
Programmable logic arrays (PLAs), self-timed dynamic PLAs 429—431
Programmable logic arrays (PLAs), two-phase PLAs 431—433
Programmable Read-only Memory (PROM) 470—475
Programmable read-only memory (PROM), electrically erasable EPROMs (EEPROMs) 474—475 477
Programmable read-only memory (PROM), electrically programmable (EPROM) 438 465 471—475
Programmable read-only memory (PROM), flash EPROMs 474 475 477
Propagate function 410
Pseudo-NMOS inverter 171—172
Pseudo-NMOS inverter, fall lime 180—182
Pseudo-NMOS inverter, gate threshold voltage 175—178
Pseudo-NMOS inverter, rise time 179—180
Pseudo-NMOS inverter, small-signal modeling 175—177
Pseudo-NMOS inverter, transient response 179
Pseudo-NMOS inverters, SPICE simulations 178 220—225
Pseudo-NMOS loads 365—367 398
Pseudo-NMOS logic 169—182 196 453
Pseudo-NMOS logic gates 169 183—184 187 191—197
Pseudo-NMOS logic gates, bias voltage 197
Pseudo-NMOS logic gates, complex 191—192
Pseudo-NMOS logic gates, power dissipation 195—197 367
Pseudo-NMOS logic gates, transistor size 195
Pseudo-NMOS logic, disadvantages 366 367
Pseudo-NMOS PLAs 427—429
Pseudo-random noise generator 407
Q-factors 511
Q-V curve 76
Quasi constant scaling 104
RAM see "Random access memory"
Random access memory (RAM), dynamic (DRAM) 458—463
Random access memory (RAM), static (SRAM) 291—293 438—452 457—458
Random-access LSSD 518
Random-access scan 518
Ratioed gates 11 511
Ratioless gates 11
RC approximate modeling, transient responses 29—31 260
RC ladder structure 267—270
Reactive ion etching (RIE) 59
Reactive plasma etching 44
Read-only memory (ROM) 464—465
Read-only memory (ROM), charge pumps 477—478
Read-only memory (ROM), electrically programmable ROM (EPROM) 438 465 471—475
Read-only memory (ROM), fusible-link ROM 465
Read-only memory (ROM), mask-programmed ROM 464—467
Read-only memory (ROM), NAND architecture 475—477
Read-only memory (ROM), programmable read-only memory (PROM) 470—475
Read-only memory (ROM), writable ROM (WROM) 465
Regenerative differential logic 390—393
Register-based controllers 317—320
Resistor equivalency 188—189
Reverse-biased diodes 74—78
Reverse-biased diodes, modeling equations 163
RIE see "Reactive ion etching"
Ripple counter 405
Ripple-carry adder 339
Ripple-carry adders 412
Rise and fall time 23—24
Rise time 23—24
Rise time, pseudo-NMOS inverter 179—180
Row decoder 439
Saturation region 94
SBFL see "Superbuffer FET logic"
Scale current 112
Scaling, MOS transistors 102—104
Scan-design techniques 511—518
Scan-path design 517
Scan/Set testing 517—518
Schottky diodes 72 85—86
Schottky diodes, GaAs digital circuits 486
SCL see "Source-coupled logic"
Second-order effects, MESFETs 489—490
Self-timed dynamic PLAs 429—431
Semiconductors, defined 71
Semiconductors, diodes 72—74
Semiconductors, forward-biased junctions 93—95
Semiconductors, graded junctions 78—79
Semiconductors, large-signal junction capacitance 80—83
Semiconductors, reversed-biased diodes 74—78
Semiconductors, Schottky diodes 72 85—86
Sense amplifier, DRAM 461—463
Sense amplifier, SRAM 449—452
Sensing read-only memory 467—470
Sequential memory 437
Serial-carry counter 406
Series resistance 118
Series termination 332
Shared junction 53 54
Short-channel effects 97
Short-channel effects, MOS transistors 104—105
Sidewall capacitance 262
Signature analysis 518 521—522
Silicon JFETs 487—489
Silicon wafer, fabrication 36
Silicon-controlled rectifier (SCR) 107
Simulation 14—19
Single-bit adders 408—412
Single-ended current-mode logic 346—349
Single-phase dynamic logic 380—382
Single-sided diode 75
Small-signal modeling, active region 165—166
Small-signal modeling, bipolar-junction transistors (BJT) 116—118 148—155
Small-signal modeling, CMOS inverter 202—204
Small-signal modeling, forward-biased diode 126—127
Small-signal modeling, MOS transistors 100—101 133—145 164 165 175
Small-signal modeling, pseudo-NMOS inverter 175—177
Source capacitance 140
Source-coupled logic (SCL) 498—500 503
spacer 48
SPICE simulations 15—19 53
SPICE simulations, capacitance 273—274
SPICE simulations, carry-generate circuits 341—342
SPICE simulations, CML carry-generate circuit 358
SPICE simulations, CML latch 359—360
SPICE simulations, CMOS inverter 199 225—229
SPICE simulations, H-SPICE 15 119
SPICE simulations, memory cell 448—449
SPICE simulations, modeling parameters 118—122
SPICE simulations, MOS transistors 176n
SPICE simulations, n-chunnel transistor 97—98 156—158
Ðåêëàìà