Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Clarkson P.A. — Applications of Analytic and Geometric Methods to Nonlinear Differential Equations
Clarkson P.A. — Applications of Analytic and Geometric Methods to Nonlinear Differential Equations



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Applications of Analytic and Geometric Methods to Nonlinear Differential Equations

Автор: Clarkson P.A.

Аннотация:

In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years. (1) The inverse scattering transform (IST), using complex function theory, which has been employed to solve many physically significant equations, the `soliton' equations. (2) Twistor theory, using differential geometry, which has been used to solve the self-dual Yang — Mills (SDYM) equations, a four-dimensional system having important applications in mathematical physics. Both soliton and the SDYM equations have rich algebraic structures which have been extensively studied. Recently, it has been conjectured that, in some sense, all soliton equations arise as special cases of the SDYM equations; subsequently many have been discovered as either exact or asymptotic reductions of the SDYM equations. Consequently what seems to be emerging is that a natural, physically significant system such as the SDYM equations provides the basis for a unifying framework underlying this class of integrable systems, i.e. `soliton' systems. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. The majority of nonlinear evolution equations are nonintegrable, and so asymptotic, numerical perturbation and reduction techniques are often used to study such equations. This book also contains articles on perturbed soliton equations. Painlevé analysis of partial differential equations, studies of the Painlevé equations and symmetry reductions of nonlinear partial differential equations.

(ABSTRACT) In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years; the inverse scattering transform (IST), for `soliton' equations and twistor theory, for the self-dual Yang — Mills (SDYM) equations. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. Additionally, it contains articles on perturbed soliton equations, Painlevé analysis of partial differential equations, studies of the Painlevé equations and symmetry reductions of nonlinear partial differential equations.


Язык: en

Рубрика: Математика/Анализ/Дифференциальные уравнения/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1993

Количество страниц: 477

Добавлена в каталог: 06.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Saveliev, M.V.      205
Sawada — Kotera (SK) equation      257—267
Scheif, W.      0
Schief, W.K.      206 228
Schiff, J.      75
Schiffer, M.      45
Schlesinger equation      18—19
Schlesinger transformation      17 18—25 301
Schrodinger operator      125 126 134 135 186 193 194 196 197 212
Schrodinger spectral problem      229
Schwarz, F.      373 389 430
Schwarzmeier, J.L.      389
Scott, A.C.      161
Scratchpad      366
Segur, H.      239 270 280 313 322 339 351 438 439 453
Self-dual curvature      27 28 33 34 36
Self-dual Yang — Mills (SDYM) equations      1—8 9—16 18 23 27 34 37 65—67 69 77—80 106 107 251 331 332 342
Self-induced Transparency (SIT) equations      155 222 223 251
Semenov-Tian-Shanskii, M.A.      181 182
Semi-conductors      385
Serre, D.      249
Shabat, A.      1
Shabat, A.B.      39 108 122 298 313 430
Shadwick, W.F.      228
Sharipov, R.A.      249
She, Z.S.      87
Sherring, J.      389
Shevitz, D.      313
Shimomura, S.      351 352
Shrock, R.E.      352
Shulman, E.I.      114
Side conditions      375 416
Sigma model      47—50
Similarity reduction      299 302 332 341 342 423 431 433
Similarity solution      393 433 436
Similarity transformation      95 96 101 165
Sine-Gordon equation      11 31ff 79 83 84 86 222 251 342 452
Sine-Gordon equation (2+1-dimensions) / Konopelchenko — Rogers equation      110 112 183 205 217 219 220 222 223
Singer, I.M.      15
Sinh-Gordon equation      409
Sivashinsky, G.I.      362
Skierski, M.      453
Sklyanin algebra      149
Sklyanin, E.K.      182
Skyrme, T.H.R.      54
Smolin, L.      15
Smoller, J.A.      45
Sogo, K.      154
Sokolov, V.V.      16 39 430
Soliani, G.      404 413
Soliton      1 4 5 14 27 28 33 34 36 37 47ff 65 66 69ff 77ff 91 120 139 155 160 183 191 193 204 207 209ff 213 214 217 219 223 229 232 233 237 248 257ff 265 267 271 282 289 290 294 297 315 341 342 387 397 410 415 416 434 441
Solombrino, L.      404
Sommerfeld radiation condition      251
Sparling equation      13
Sparling, G.A.J.      8 16 39 75 256
Spectral transform      103 115 155 156 160 207 211ff
Springael, J.      0
Statistical mechanics      342
Stegun, LA.      322
Steiglitz, K.      239
Stenflo, L.      286
Stephani, H.      373 439
Steudel, J.      228
Stewartson, K.      192 404
Stimulated Raman Scattering (SRS)      155—161 222 342
Strachan, I.A.B.      16 75
Suris, Yu.B.      181
Sutcliffe, P.M.      54 75 80
Symmetry algebra      407 409 410 432 435 436
Symmetry reduction      4 315 342 375ff 383 385ff 395 397 403 415ff 425 426 442
Tabor, M.      280 286 288 298 362 388 389 390 404 429 430
Tafel, J.      75
Tajiri, M.      270
Takahashi, D.      206 239
Takesaki, K.      439
Takhtadzhyan, L.A.      181 182 239
Takhtajan, L.A.      8 16
Talanov lens transformation      415 427
Talanov, V.I.      430
Talon, M.      181
Tamizhmani, K.M.      138 313 413
Tanaka, M.      389
Tang, S.      352
Tensor bundle      129 130
Theta function      28 33 36 37
Thompson, C.J.      181 313 413 438
Three-wave interaction equations      245 246 342
Thurston, W.P.      239
Ting, L.U.      228
Tod, K.P.      16 352
Toda equation      11 251 405 406 435 436
Toda equation — 2+1 dimensions      251—256 408—411
Toda lattice equation      31 217 222 251 410
Toda molecule equation      251 342
Toda, M.      239 413
Tokihiro, T.      206
Tomei C.      429
Topunov, V.L.      373
Tracy, C.A.      352
Tricomi integral equation      217 218
Trubowitz, E.      429
Tsarev, S.P.      228 249
Tsuzuki, T.      362
Tu, G.Z.      138 181 438
Tuszynski, J.A.      453
Twistor      2 9 10 13 14 15 18 23 24 34 35 67 69 74 78
Tzitzeica, G.      228 249
Uchinami, M.      154
Ueno, K.      313 439
Ultrahyperbolic equation      66
van den Bergii, N.      352
van der Linden, J.      181 438
Van Moerbeke, P.      240 439
Van Saarloos, W.      286
Veselov, A.P.      181 192
Viallet, C.-M.      181 313
Villarroel, J.      75 256
Virasoro algebra      171
Volkov, A.Yu.      182
Volterra integral equation      81 84 212
Vorob'ev, E.M.      390
Vos, K.      441
Wadati, M.      154 192 205
Wahlquist, H.      205
Wakimoto, M.      16
Ward transform      18 23
Ward's theorem      35
Ward, R.S.      8 16 25 39 75 80 256
Was, P.      352
Wasserman, A.G.      45
Watson, G.M.      430
Wave equation      66 77 218
Weak Lax pair      208 209 210 211
Weak symmetries      375 416
Weber — Hermite equation      310
Weierstrass elliptic function      386 400 415 417 424
Weierstrass sigma function      386
Weierstrass zeta function      386
Weiss, J.      280 286 288 298 362 390 430
Wells, R.O.      25 39 75
Wen-Xiu, M.      138
Wess — Zumino — Witten equation      12
Whit taker equation      310
Whitehead, J.A.      286 389
Whitham equation      241 243 247
Whitham, G.B.      430
Whittaker, E.E.      430
Willox, R.      270
Wilson, G.      39 138
Winternitz, P.      313 352 373 388 389 404 413 430 439 453
Witten, E.      16
Wolf, T.      373
Wolfram, S.      239
Wong, W.K.      16
Woo, G.      54
Woodhouse, N.M.J.      16 25
Wright, E.M.      148
Wu, T.T.      351 352
Xanthopoulos, B.A.      352
Xing-Biao Hu      270
XY-model      342
Yakhot, V.      87
Yamilov, R.I.      249 430
Yang — Baxter equation      149 150 153 163— 174 177
Yang — Mills curvature      41
Yang — Mills equation      41
Yang — Mills vector bundle      1ff
Yates, R.G.      39
Yau, S.-T.      45
Yip, S.      453
Yong, Li      270
Yoshida, M.      351
Yoshizawa, S.      389
Young diagram      140 142 143
Zakharov — Shabat spectral problem      91 156 163 185 209ff
Zakharov, V.E.      8 39 108 114 228 239 249 430 439
Zakrzewski, W.J.      54
Zeng, Y.B.      389
Zero curvature      2 3 27 28—33 35 195 202 203 243
Zhang, H.      138
Zhang, Y.      87 339
Zhdanov, R.Z.      388
Zheng, Yu-kun      138
Zhiber — Shabat equation      282
Zhou, X.      351 404
Zuber, J.B.      313
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте