Авторизация
Поиск по указателям
Clarkson P.A. — Applications of Analytic and Geometric Methods to Nonlinear Differential Equations
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Applications of Analytic and Geometric Methods to Nonlinear Differential Equations
Автор: Clarkson P.A.
Аннотация: In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years. (1) The inverse scattering transform (IST), using complex function theory, which has been employed to solve many physically significant equations, the `soliton' equations. (2) Twistor theory, using differential geometry, which has been used to solve the self-dual Yang — Mills (SDYM) equations, a four-dimensional system having important applications in mathematical physics. Both soliton and the SDYM equations have rich algebraic structures which have been extensively studied. Recently, it has been conjectured that, in some sense, all soliton equations arise as special cases of the SDYM equations; subsequently many have been discovered as either exact or asymptotic reductions of the SDYM equations. Consequently what seems to be emerging is that a natural, physically significant system such as the SDYM equations provides the basis for a unifying framework underlying this class of integrable systems, i.e. `soliton' systems. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. The majority of nonlinear evolution equations are nonintegrable, and so asymptotic, numerical perturbation and reduction techniques are often used to study such equations. This book also contains articles on perturbed soliton equations. Painlevé analysis of partial differential equations, studies of the Painlevé equations and symmetry reductions of nonlinear partial differential equations.
(ABSTRACT) In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years; the inverse scattering transform (IST), for `soliton' equations and twistor theory, for the self-dual Yang — Mills (SDYM) equations. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. Additionally, it contains articles on perturbed soliton equations, Painlevé analysis of partial differential equations, studies of the Painlevé equations and symmetry reductions of nonlinear partial differential equations.
Язык:
Рубрика: Математика /Анализ /Дифференциальные уравнения /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1993
Количество страниц: 477
Добавлена в каталог: 06.04.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Kacs, V.G. 16
Kadomtsev — Petviashvili (KP) equation 6 8 10 15 74 109 139—148 183 193 202- 251 290 416
Kadomtsev — Petviashvili I (KPI) equation 212 213
Kadomtsev, B.B. 192
Kamke, E. 453
Karlhede, A. 25
Karra, G. 313 439
Kashiwara, M. 205
Kaup — Kupershmidt equation 282
Kaup, D.J. 270 286 323 430
Kawahara, T. 389
Kawamoto, S. 430
Kazakov, V.A 313
Keefe, L.R. 286
Keiser, J.M. 239
Keller, J.B. 228
Kercher M. 87
Kersten, P.H.M. 373
Killing vector 66 69
Kimura, H. 351
Kingston, J.G. 228
Kitaev, A.V. 313 351 439
Klein — Gordon equation 441
Knot theory 149
Kodama, Y. 249
Kolmogoroff, A. 389
Kolmogorov — Petrovskii — Piskunov (KPP) equation 282 378
Kolmogorov, A.N. 286
Konno, K. 192 205
Konopelchenko, B.G. 114 192 206 228
Korepin, V.E. 182
Korteweg — de Vries (KdV) equation 5 6 12 14 27 33 36 78 134ff 155 163 169 172ff 183 192ff 217 232 241 247 248 257f-261 265—271 282 287 354ff 35S 387
Kowalevskaya, S.V. 280
Krichever, I.M. 154 215 240 249
Kruskal, M.D. 280 313 323 331 388 404 413 429
Kudryashov, N.A. 362
Kulish, P.P. 182
Kumei, S. 339 373 429 439
Kuperschmidt, B.A. 430
Kuramoto — Sivashinsky equation 282 284 359—361
Kuramoto, Y. 362
Kuznetsov, E.A. 114
Ladik, F.J. 181
Ladik, J. 313
Laidlaw, W.G. 453
Lakshmanan, M. 188 404
Lamb, G.L. Jr 161
Lambert, F. 270
Lambert, F.J. 257
Lame equation 386
Landau — Ginzberg equation 281—285 385- 441
Langer, J.S. 453
Laplace transform 83 165 169
Latifi, A. 161
Lattice Korteweg — de Vries equation 170—174
Lattice modified Korteweg 1 de Vries equation 165 169 170—174 302
Lattice self-dual Yang — Mills equations 78—80
Lavie, M. 280
Lax pair 2 3 11 12 27 73 90 125 126 132 134ff 165 167 168 177 184 185 194 195 202 204 207ff 229 231 257 258 265ff 281 282 289 290 295 297 300 301 308 309 311 312 353 396 431
Lax, P.D. 270
Leaute, B. 351
Lee, Y. 138
Leese, R.A. 54 75
Legendre transformation 170
Leo, R.A. 404
Leon J.J.-P. 108 161 205 192 215 404
Leon, J.J.P. 155
Levi, D. 313 389 404 405 413 430 439
Li, L.-C. 181
Lie algebra 1 6 8ff 19 30 31 37 65 68 125ff 135 136 139 246 247 337 375 405 406 408 409 411 424 426
Lie bracket 133
Lie derivative 127ff
Lie group 27 28 33 331ff 336 337 363 367 375 385 387 405 416 417 424 426 427
Lie symmetry method 332 333 336 363 375 376 383 385 405 416 417 424 426 427 431 433
Lindstrom, U. 25
Linear heat equation 368 369
Liouville's theorem 2 3 20 163
Lipovskii, V. 256
Littlewood D.E. 148
Loewner system 184 223
Loewner transformation 217—220
Loewner, C. 228
Logan, J.D. 438
Loop algebra 12
Loop group 13
Lou, S.-Y. 288 389
Ludlow, D.K. 388 389 415
Lukashevich, N.A. 313 351
Lusche, M. 54
MacCall, S.L. 161
MacCallum, M.A.H. 351
Maccari, A. 114
Macdonald, I.M. 148
Macsyma 366 375
Maeda, S. 438
Magnetic monopoles 65
Maillard, J.-M. 313
Maillet, J.M. 181
Makhankov, V G 215
Malanyuk, T M 215
Manakov, S.V. 108 161 228 239 240 249 256 439
Mancarello, G. 404
Manin, Yu.L 16
Manna, M. 108 215
Mansfield, E. 389 404
Mansfield, E.L. 375
Maple 366 375 376
Marcilhacy, G. 351 352
Martina, L. 108 192 205 215 404 413
Mason, L. 9 17
Mason, L.J. 8 16 25 39 75 256
Mathematica 366 375
Matveev, V.B. 192 205
Maxwell equation 41
McCaskill, J.S. 352
McCoy, B.M. 351 352
McIntosh, I. 39
Mcintosh, I.R. 27
McLeod, J.B. 45 322 323 351 352
McMillan, E.M. 181
Melenk, H. 154
Menyuk, C.R. 352
Mikhailov — Shabat (MS) equations 289 292 296—297
Mikhailov, A.V. 256 298 413 430 439
Milne, A.E. 341
Miodek, I. 430
Miura transformation 27 173 183 192 205 268 300 302 309 310 415
Miwa, T. 25 148 181 205 206 270 280 313
Mobius group 19 278 279 361
Mobius transformation 17 18 19
Modified Boussinesq (MBQ) equation 295 415 417 429
Modified Kadomtsev — Petviashvili (MKP) equation 139 143 193 205 290 416
Modified Korteweg-de Vries (mKdV) equation 27 30ff 36 163 169 172ff 183 192 257 267ff 282
Modified Korteweg-de Vries (mKdV) equation — 2+1-dimensions 183
Modified modified Kadomtsev — Petviashvili (MMKP) equation 143
Modified Novikov — Veselov (mNV) equation 190 192
Mokhov, O.I. 249
Moller 154
Monge — Ampere equation 217 218 225ff
monopole 47 69
Moreira, I. 313
Morris, H.C. 352
Moser, J. 181
Moutard theorem 217ff 223 227
Moutard transformation 183 186 188 219
Moutard, Th.-F. 192
Mugan, U. 313 351 352
muMATH 366 375
Murata, Y. 323
Murphy, G.M. 339 453
Musette, M. 270 286 288 362
Musher, S.L. 439
Myers, J. 352
N-wave equation 1 5—8 12 91 98 99 109 202 241 244 246
N-wave equation — 2+1-dimensions 7
Nagumo, J.S. 389
Nelson, E. 138
Neun, W. 154
Newell, A.C 39 161 239 286 298 351 323 389 429
Newman, E.T. 16
Newton, P.K. 87
Ni, G.-J. 389
Nijhoff F.W. 181 182 313 389 413 430 438 439
Nijhoff, F.W. 163
Nikulichev, S. 256
Nimmo, J.J.C. 75 114 148 192 228 404 429
Nishitani, T. 270
Noethers Theorem 127
Nonclassical symmetry 375 376 378 379 384 385 387 405 415ff 426
Nonlinear diffusion equation 369 372
Nonlinear heat equation 376 383—385
Nonlinear Schrodinger equation 6 12 27ff 37 67 78 109 115 117 155 183 217 281 282 284 395 403 404 441
Nonlinear Schrodinger equation — 2+1-dimensions 403 415 427
Nonlinear separation method 376
Nonlinear telegraph equation 369 373
Nonlocal symmetries 247
Novikov — Veselov (NV) equation 183 192 217 219
Novikov, S P 192 239 249
Novokshenov, V.Yu. 122 351 352
Nozaki, K. 286
Nucci, M.C. 138 389 413 430
Null-reduced wave equation 66 69
Nutku, Y. 351
Oevel, G. 138
Oevel, W. 138 206 270
Ohta, Y. 206
Oishi, S. 352
Okamoto, K. 352
Olshanskii, G.I. 182
Olver, P.J. 339 351 352 373 389 413 430 439
Oron, A. 389
Orszag, S.A. 339
Otwinowski, M. 453
Ovsiannikov, L.V. 373 413 439
Paine, G.H. 439
Painleve (Ablowitz — Ramani — Segur) conjecture 271—273 303 331 342 403 431
Painleve (Weiss — Tabor — Carnevale) test 77 191 271—281 283 287 289—291 299 300 311 353 354 357 358 360 397 417 427 429
Painleve analysis 271
Painleve equation 13 17 18 18 299 300 302 304 307—312 342 431
Painleve equation, First Painleve equation (PI) 299 431 434
Painleve equation, Fourth Painleve equation (PIV) 315—330 395 400 401 403 415 417 419 420
Painleve equation, Second Painleve equation (PII) 400 401 403 415 417 422
Painleve equation, Sixth Painleve equation (PVI) 17 23
Painleve equation, Third Painleve equation (PHI) 341—352
Painleve property 289 290 302 441
Painleve truncation method 271 279 282 285 289 291 296 300 301 353ff 360 380 383
Painleve — Darboux equation 355
Painleve, P. 280 313 339
Pall, L. 75
Papadopoulo, E.P. 239
Papageorgiou, V.G. 181 182 313 413 438 439
Papatheodoru, T.S. 239
Paquin, G. 352
Pare, C. 429
Parisi, G. 87
Parity-rule filter automata (PRFA) 229
Park, J.K. 239
Parmentier, S. 181
Pashaev, O.K . 108, 215 Paul, R. 453
Pavlov, M.V. 249
Pempinelli, F 108 114 192 205 215 404
Pempinelli, F. 89 207
Penrose, R. 16 25
Pereira, N.R. 286
Perelomov, A.M. 138
Periwal, V. 313
Perk, J.H.H. 352
Persides, S. 352
Perturbation bundle 125 126 132 134
Perturbed Korteweg — de Vries equation 287- 288
Petrovskii, I.G. 286
Petrovsky, I. 389
Petviashvili, V.I. 192
Peyrard, M. 54
Pickering, A. 280 286 339 362
Piette, B. 54
Pinkall, U. 240
Piscounov, N. 389
Piskunov, N.S. 286
Pitaeskii, L.P. 239 249
Pnevmatikos, S. 270
Pohlmeyer — Regge — Lund equation 342
Pohlmeyer, K. 108
Poisson bracket 127 164 165 167 170 173 242
Poisson structure 163 165 170
Potential symmetry 363 366—370
Previato, E 39
Pucci, E. 389 413 430
Quantum group 149 163 165 166
Quantum inverse scattering 149
Quantum Toda equation 165
Quantum Volterra system 172
Quantum Wess — Zumino — Novikov — Witten equation 165
Quantum Yang — Baxter equation 149—154
Quispel, G.R.W. 181 182 313 313 413 430 438 439
Radon transform 14
Ragnisco, O. 181 228 239 438
Ramani, A. 192 280 313 322 339 351 404 413 439 453
Ramgulam, U. 228
Real Newell — Whitehead equation 378
Recursion operator 4 5 7 132 134 258 259 261 265 268 353 356 356
Reduce 151 366 375
Regge — Lund equation 222
Reid, G.J. 373 389
Remoissenet, M. 270
Reshetikhin, N.Yu. 181 182
Reus, E.M. 289
Reyman, A.G. 181
Ribaucour transformation 244
Ricatti equation 451
Riccati 117 119 120 121 279 347 357 361
Riemann problem 69
Riemann sphere 10 19 20 28
Riemann surface 14 34ff
Riemann theta function 38
Riemann — Hilbert problem 10 13 28 36 115 158 396
Rindler, W. 25
Roberts, J.A.G. 181 313 413 438
Rocek, M. 25
Rodriguez, M.A. 413
Rogers, C 114 196 206 228
Rogers, C.A. 0
Rosenau, P. 389 413 430
Roskes, G J 192
Roy, S. 430
Ruan, H.-Y. 288 389
Rubenchik, A.M. 439
Saaty, T.L. 439
Sabatier, P.C. 108 114 215
Saccomandi, G. 389
Sachs, R. 430
Saclioglu, C.K. 352
Sahadevan, R. 431
Salle, M A. 192 205
Santini, P.M. 108 181 215 239 240 404 438
Sanuki, H. 192 205
Saridakis, Y.G. 239
Sato, M. 148 205
Sato, Y. 148 205
Satsuma, J. 206 239 270 313 389 430
Реклама