Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Larsen R.J., Marx M.L. — Introduction to Mathematical Statistics and Its Applications, An (4th Edition)
Larsen R.J., Marx M.L. — Introduction to Mathematical Statistics and Its Applications, An (4th Edition)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Introduction to Mathematical Statistics and Its Applications, An (4th Edition)

Àâòîðû: Larsen R.J., Marx M.L.

Àííîòàöèÿ:

I am surprised by the number of negative reviews for what I consider to be a nicely written, well thought out, and logically presented introductory course on mathematical statistics. Yes, a working knowledge of elementary calculus is a prerequisite. But the mathematics invoked in the exposition of concepts and theorems are kept as simple as possible while maintaining that modest level of rigor appropriate for a introductory exposition. If you do not have the minimal mathematical prerequisites (such as freshman calculus), blame your instructor or your school for selecting an inappropriate text. But don't blame the authors! I thought the examples and problems were appropriate in their level of difficulty (mostly not so hard) and the relation to the material just covered. There are plenty of poorly written, impossibly dry, inpenetrable texts on statistics out there - this is not one of them. In addition, the book is attractively packaged, the paper quality is excellent, the visuals are informative and clearly presented - that also should not be taken for granted. Lastly the authors have a wicked entertaining sense of humor that spice the presentation throughout. I consider this book to be a welcome addition to the set of modern textbooks available to the curious serious student of probability and statistics.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 4

Ãîä èçäàíèÿ: 2005

Êîëè÷åñòâî ñòðàíèö: 928

Äîáàâëåíà â êàòàëîã: 02.10.2015

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Alternative hypothesis      428 434—435
ANOVA table      739—740 763 111
Arc sine transformation      759—760
Asymptotically unbiased      388 406
Bayes theorem      62—63 79—81 410—411
Bayesian estimation      410—422
Behrens — Fisher problem      555 567
Benford's law      152—153 609—611
Bernoulli distribution      229 235 344—346 394—395
Bernoulli trials      229
Bertillon configuration      87
Best estimator      395
Beta distribution      413
Bills of mortality      8—10
Binomial coefficients      108 110—113
Binomial distribution, additive property      221—222
Binomial distribution, arc sine transformation      759—760
Binomial distribution, confidence interval for p      369—371 587—588
Binomial distribution, definition      131 155
Binomial distribution, estimate for p      344—346 380—381 394—395
Binomial distribution, hypothesis tests for p      440 443—445 578—580
Binomial distribution, in sign test      804
Binomial distribution, moment-generating function      258—259
Binomial distribution, Moments      176 229 235 264—265
Binomial distribution, normal approximation      292—293 297—299 338—339
Binomial distribution, Poisson approximation      276—277
Binomial distribution, relationship to Bernoulli distribution      229 235
Binomial distribution, relationship to beta distribution      415
Binomial distribution, relationship to hypergeometric distribution      138—139
Binomial distribution, relationship to multinomial distribution      602—603
Binomial distribution, sample size determination      373—374
Birthday problem      117—119
Bivariate distribution      see "Joint probability density function"
Bivariate normal distribution      719—723
BLOCKS      524 773—774 788—789 792—793 796—800 832—833
categorical data      535—537 627—637
Central limit theorem      292—294 302—307
Chebyshev’s inequality      408—409
Chi square distribution, additive property      330
Chi square distribution, definition      474
Chi square distribution, formula for approximating percentiles      506—507
Chi square distribution, moment-generating function      332
Chi square distribution, moments      330
Chi square distribution, noncentral      767—769
Chi square distribution, relationship to F distribution      475
Chi square distribution, relationship to gamma distribution      474
Chi square distribution, relationship to normal distribution      474
Chi square distribution, relationship to Student t distribution      476
Chi square distribution, table      500—501 856—857
Chi square test for goodness-of-fit      599 606—607 616 642—644
Chi square test for independence      631
Chi square test for the variance      504 516—519
Chi square test in nonparametric analyses      827 832
Combinations      107
Complement      30
Completely randomized one-factor design comparison, with randomized block design      780
Completely randomized one-factor design, comparison with Kruskal — Wallis test      841—846
Completely randomized one-factor design, computing formulas      742
Completely randomized one-factor design, error sum of squares      737—738
Completely randomized one-factor design, notation      733—734
Completely randomized one-factor design, relationship to two-sample data      745—746
Completely randomized one-factor design, test statistic      738—739 769
Completely randomized one-factor design, total sum of squares      737—738
Completely randomized one-factor design, treatment sum of squares      735—738 754 766—767
Conditional expectation      677—679
Conditional probability definition      43—44 250
Conditional probability in bivariate distribution      249—256
Conditional probability in higher-order interactions      53—54
Conditional probability in partitioned sample spaces      56—57 62—63 410—411
Conditional probability in regression      677—679
Confidence band      695
Confidence coefficient      368—369
Confidence interval      see also "Prediction interval"
Confidence interval, definition      363—364
Confidence interval, for conditional mean in linear model      694
Confidence interval, for difference of two means      582
Confidence interval, for difference of two proportions      587
Confidence interval, for mean of normal distribution      364—369 481—482
Confidence interval, for p in binomial distribution      369—371
Confidence interval, for quotient of two variances      585
Confidence interval, for regression coefficients      688 690—691
Confidence interval, for variance of normal distribution      501
Confidence interval, interpretation      365—367 423—424
Confidence interval, relationship to hypothesis testing      585
Consistent estimator      406—409
Consumer’s risk      459
Contingency table      536 628 635
Continuity correction      296—297
contrast      751—756 782—784
Correlation coefficient, applied to linear relationships      707
Correlation coefficient, definition      707
Correlation coefficient, estimate      708—709
Correlation coefficient, in bivariate normal distribution      719—723
Correlation coefficient, interpretation      710 719
Correlation coefficient, relationship to covariance      707
Correlation coefficient, relationship to independence      704
Covariance      702—705 707
Cramer — Rao lower bound      394—397 404—405
Critical region      433
Critical value      433
Cumulative distribution function (cdf), definition      159 170 213
Cumulative distribution function (cdf), in pdf of order statistics      244 247
Cumulative distribution function (cdf), relationship to pdf      170 214
Curve-fitting, examples      648—655 663—671
Curve-fitting, method of least squares      647—648
Curve-fitting, residual      650
Curve-fitting, residual plot      650—655
Curve-fitting, transformations to induce linearity      662—663 666 668—669 671
Data transformations      758—760
De Moivre — Laplace limit theorem      292—293 301—302
de Morgan’s laws      35
Density function      see "Probability density function (pdf)"
Density-scaled histogram      165—168 291 339—340 359—362
Dependent samples      524—525 773—774 792—793 796—800
Distribution-free statistics      see "Nonparametric statistics"
Efficiency      388—393 396
Efficient estimator      395—396
Estimation      see also "Confidence interval"
Estimation, Bayesian      410—422
Estimation, least squares      647—648
Estimation, maximum likelihood      344—354
Estimation, method of moments      357—362
Estimation, point versus interval      363—364
Estimator      see also "Confidence interval"
Estimator, best      396
Estimator, consistent      408—409
Estimator, Cramer — Rao lower bound      394
Estimator, difference between estimate and estimator      346 349
Estimator, efficient      396
Estimator, for binomial p      344—346 380—381 394—395
Estimator, for bivariate normal parameters      721
Estimator, for contrast      752—753
Estimator, for correlation coefficient      708—709
Estimator, for exponential parameter      351 385—386
Estimator, for gamma parameters      359—362
Estimator, for geometric parameter      348—349
Estimator, for normal parameters      353—354 383—384
Estimator, for Poisson parameter      352—353 402 411—412 422
Estimator, for slope and gamma-intercept (linear model)      679—681
Estimator, for uniform parameter      382—383 390—391 403 407 424—426
Estimator, for variance in linear model      683—684
Estimator, interval      363—364
Estimator, sufficient      398 401—402
Estimator, unbiasedness      381—385
Event      24
Expected value, conditional      677—679
Expected value, definition      175 199—201
Expected value, examples      174—182 227—228
Expected value, in method of moments estimation      357—358
Expected value, of functions      186—187 226—227 232—233 320—321
Expected value, of linear combinations      229
Expected value, of loss functions      420
Expected value, of sums      229—232
Expected value, relationship to median      182—183
Expected value, relationship to moment-generating function      261
Experiment      24
Experimental design      523 527—528 538—540 733 773—774 780 792—793 796—800
Exponential distribution, examples      161—163 167—168 183 222—223 242—243 290—292 333—337 351
Exponential distribution, memoryless property      256
Exponential distribution, moment-generating function      259
Exponential distribution, Moments      263
Exponential distribution, parameter estimation      351 385—386
Exponential distribution, relationship to Poisson distribution      289—290
Exponential distribution, threshold parameter      351
Exponential form      405
Exponential regression      662—666
F distribution, definition      475
F distribution, in analysis of variance      738—739 754—755 777
F distribution, in inferences about variance ratios      569 585
F distribution, relationship to chi square distribution      475
F distribution, relationship to Student t distribution      476—477
F distribution, table      476 857—871
Factorization theorem      403
Finite correction factor      375
Fisher’s lemma      516
Friedman’s test      832—833 848—849
Gamma distribution, additive property      330
Gamma distribution, definition      327 329
Gamma distribution, examples      328—329 331 359—362
Gamma distribution, moment-generating function      332
Gamma distribution, Moments      330
Gamma distribution, parameter estimation      359—362
Gamma distribution, relationship to chi square distribution      474
Gamma distribution, relationship to exponential distribution      327
Gamma distribution, relationship to normal distribution      474
Gamma distribution, relationship to Poisson distribution      327 415
Generalized likelihood ratio      463
Generalized likelihood ratio test (GLRT), definition      464
Generalized likelihood ratio test (GLRT), examples      464—465 516—521 569 577 593—595 607—608 735
Geometric distribution, definition      317—318
Geometric distribution, examples      317—321
Geometric distribution, memoryless property      319—320
Geometric distribution, moment-generating function      258 318
Geometric distribution, Moments      262 318
Geometric distribution, parameter estimation      348—349
Geometric distribution, relationship to negative binomial distribution      322
Geometric mean      385—386
Geometric probability      207—209
Hazard rate      173
Hypergeometric distribution, definition      139 155
Hypergeometric distribution, examples      141—146
Hypergeometric distribution, Moments      177 375 706
Hypergeometric distribution, relationship to binomial distribution      138—139
Hypothesis testing, critical region      433
Hypothesis testing, decision rule      428—432 455—459
Hypothesis testing, level of significance      434
Hypothesis testing, P-value      437—438
Hypothesis testing, Type I and Type II errors      447—459 747
Independence, effect of, on the expected value of a product      233
Independence, mutual versus pairwise      75—76
Independence, of events      44 70—72 75—77 627—630
Independence, of random variables      216 218
Independence, of regression estimators      683 728—731
Independence, of repeated trials      78—83
Independence, of sample mean and sample variance (normal data)      474 514—516
Independence, of sums of squares      737
Independence, tests for      627—631
Independent samples      524—525 529—532 554 733 796—800 822 826
Intersection      28
Interval estimate      see "Prediction interval"
Joint cumulative distribution function      213—215
Joint probability density function      203—207 215
k-sample data      531—532 733—734 826—827
Kruskal — Wallis test      826—830 841—848
kurtosis      200—201
Law of small numbers      284—285
level of significance      434 437 447—448 457—458 747
Likelihood function      347
Likelihood ratio      see "Generalized likelihood ratio"
Linear model, assumptions      677—679
Linear model, confidence intervals for parameters      688 690—691
Linear model, hypothesis tests      685 690—691 697
Linear model, parameter estimation      678—679 683—684
Logarithmic regression      666—668
Logistic regression      668—669
Loss function      419—422
Margin of error      372 423—424
Marginal probability density function      205 211—212 417
Maximum Likelihood Estimation      see also "Estimation"
Maximum likelihood, estimation definition      347
Maximum likelihood, estimation examples      344—346 348—354 679
Maximum likelihood, estimation in goodness-of-fit testing      615—616
Maximum likelihood, estimation in regression analysis      679 683—684
Maximum likelihood, estimation properties      404—405 409
Mean free path      181
Mean square      740
Median      182—183 388 804
Median unbiased      388
Method of least squares      see "Estimation"
Method of moments      see "Estimation"
Minimum variance estimator      395
MINITAB calculations for cdf      272—273 337—338
MINITAB calculations for completely randomized one-factor design      762—764
MINITAB calculations for confidence intervals      366 512—513 596—597
MINITAB calculations for critical values      512
MINITAB calculations for Friedman’s test      848—849
MINITAB calculations for histograms      339—340
MINITAB calculations for independence      644—645 726—727
MINITAB calculations for Kruskal — Wallis test      847—848
MINITAB calculations for Monte Carlo analysis      333—339 366 385—386 424—426 432
MINITAB calculations for one-sample t test      513—514
MINITAB calculations for pdf      272 337 444
MINITAB calculations for randomized block design      800—801
MINITAB calculations for regression analysis      726—728
MINITAB calculations for robustness      495—498
MINITAB calculations for sample statistics      510—511
MINITAB calculations for Tukey confidence intervals      764—766
MINITAB calculations for two-sample t test      595—597
Model equation      529—537
Moment-generating function, as technique for finding distributions of sums      267
Moment-generating function, definition      257
Moment-generating function, examples      258—260 311
Moment-generating function, in proof of central limit theorem      341—342
Moment-generating function, properties      261 266
Moment-generating function, relationship to moments      261
Moments      see "Variance"
Moore’s Law      663—666
Multinomial coefficients      101
Multinomial distribution      600—603 607
Multiple comparisons      747—750
Multiplication rule      86
Mutually exclusive events      29 71
Negative binomial distribution      157 322—326
Noncentral chi square distribution      767
Noncentral F distribution      768—769
Noninformative prior      412
Nonparametric statistics      803
Normal distribution, additive property      312
Normal distribution, approximation to Binomial distribution      292—293 297—299 338—339
Normal distribution, approximation to Poisson distribution      305—306
Normal distribution, approximation to sign test      804
Normal distribution, approximation to Wilcoxon signed rank statistic      817
Normal distribution, as limit for Student t distribution      470—472 478—479
Normal distribution, central limit theorem      302 341—342
Normal distribution, confidence interval for mean      364—369 482—485 582—585
Normal distribution, confidence interval for variance      501—504
Normal distribution, definition      308
Normal distribution, hypothesis test for mean (variance known)      435
Normal distribution, hypothesis test for mean (variance unknown)      490 493—498
Normal distribution, hypothesis test for variance      504
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå