Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Larsen R.J., Marx M.L. — Introduction to Mathematical Statistics and Its Applications, An (4th Edition)
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Introduction to Mathematical Statistics and Its Applications, An (4th Edition)
Àâòîðû: Larsen R.J., Marx M.L.
Àííîòàöèÿ: I am surprised by the number of negative reviews for what I consider to be a nicely written, well thought out, and logically presented introductory course on mathematical statistics. Yes, a working knowledge of elementary calculus is a prerequisite. But the mathematics invoked in the exposition of concepts and theorems are kept as simple as possible while maintaining that modest level of rigor appropriate for a introductory exposition. If you do not have the minimal mathematical prerequisites (such as freshman calculus), blame your instructor or your school for selecting an inappropriate text. But don't blame the authors! I thought the examples and problems were appropriate in their level of difficulty (mostly not so hard) and the relation to the material just covered. There are plenty of poorly written, impossibly dry, inpenetrable texts on statistics out there - this is not one of them. In addition, the book is attractively packaged, the paper quality is excellent, the visuals are informative and clearly presented - that also should not be taken for granted. Lastly the authors have a wicked entertaining sense of humor that spice the presentation throughout. I consider this book to be a welcome addition to the set of modern textbooks available to the curious serious student of probability and statistics.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: 4
Ãîä èçäàíèÿ: 2005
Êîëè÷åñòâî ñòðàíèö: 928
Äîáàâëåíà â êàòàëîã: 02.10.2015
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Normal distribution, in linear model 678—679
Normal distribution, independence of sample mean and sample variance 474 514—516
Normal distribution, moment-generating function 260 311
Normal distribution, Moments 308
Normal distribution, parameter estimation 353—354 383—384
Normal distribution, relationship to chi square distribution 474 476
Normal distribution, table 294—297 851—852
Normal distribution, transformation to standard normal 267—268 308
Normal distribution, unbiased estimator for variance 383—384 683—684
Null hypothesis 428 436
One-sample data 435 440 483 490 501 504 528—529 804
One-sample t test 489—490 513—514
Operating characteristic curve 146
Order statistics, definition 241
Order statistics, estimates based on 350—351
Order statistics, joint pdf 246—247
Order statistics, probability density function for ith 242—244
Outliers 640—642
p-value 437—438
Paired data 532 788 807—808 820—822
Paired t test 789—793 796—800
pairwise comparisons see "Tukey’s test"
Palindrome 103—104
PARAMETER 344
Parameter space 463—465
Pareto distribution 356
Partitioned sample space 56—57 63 410—411
Pascal’s triangle 110
Pearson product moment correlation coefficient 709
Permutations objects all distinct 93
Permutations objects not all distinct 100
Poisson distribution, additive property 267
Poisson distribution, approximated by normal distribution 305—306
Poisson distribution, as limit of binomial distribution 276—277
Poisson distribution, definition 281
Poisson distribution, hypothesis test 457—458
Poisson distribution, moment-generating function 265
Poisson distribution, Moments 265 281
Poisson distribution, parameter estimation 352—353 402 411—412 422
Poisson distribution, relationship to exponential distribution 289—290
Poisson distribution, relationship to gamma distribution 327 415
Poisson distribution, square root transformation 759
Poisson model 284—285
Poker hands 119—121
Political arithmetic 7—10
Posterior distribution 412—416
Power 449—454 771
Power curve 450 466—468
Prediction interval 695—696
Prior distribution 411—416
Probability density function (pdf) 155 168—169 215 220 223—225
Probability function 36—38 149 161—163
Probability, axiomatic definition 23 36—38
Probability, classical definition 6 22 113
Probability, empirical definition 22—23 125—127
Problem of points 7
Producer’s risk 459
Propagation of errors 237—240
Qualitative measurement 525—527
Quantitative measurement 525—526
Random Mendelian mating 73
Random sample 219
Random variable 129 149 154 168—169
Randomized block data 532—534 773—774
Randomized block design, block sum of squares 776
Randomized block design, comparison with completely randomized one-factor design 780
Randomized block design, computing formulas 778
Randomized block design, error sum of squares 775—776
Randomized block design, notation 774
Randomized block design, relationship to paired t test 794—795
Randomized block design, test statistic 111
Randomized block design, treatment sum of squares 776
RANGE 247—248
Rank sum test see "Wilcoxon rank sum test"
Rayleigh distribution 181—182
Rectangular distribution see "Uniform distribution"
Regression curve 677—679 720
Regression data 534—535 647 677—679 702
Relative efficiency 388—393
Repeated independent trials 78
Residual 650
Residual plot 650—655
Risk 420—422
Robustness 485 493—498 560 623 803 841—846
runs 835—838
Sample correlation coefficient, definition 709—710
Sample correlation coefficient, in tests of independence 721—723
Sample correlation coefficient, interpretation and misinterpretation 709—714 725
Sample outcome 24
Sample size determination 373—374 454—455 552
Sample space 24 56—57
Sample standard deviation 384
Sample variance 384 555 683—684 697 737 776
Sampling plan 145—146
Serial number analysis 391—393
Sign test 804—808 846
Signed rank test see "Wilcoxon signed rank test"
skewness 200
Spurious correlation 725
Square root transformation 759
Squared-error consistent 409
St. Petersburg paradox 180—181
Standard deviation 195 384
Standard normal distribution, definition 294
Standard normal distribution, in central limit theorem 302 307
Standard normal distribution, in de Moivre — Laplace limit theorem 293
Standard normal distribution, table 294—296 851—852
Standard normal distribution, Z transformation 267—268 308 312
Statistic 346
Statistically significant 433
Stirling’s formula 96 102
Student t distribution, approximated by standard normal distribution 470—472 478—479
Student t distribution, definition 476—478
Student t distribution, in inferences about difference between two dependent means 789
Student t distribution, in inferences about difference between two independent means 519—521 555 557 563 567
Student t distribution, in inferences about single mean 482—483 489—490
Student t distribution, in regression analysis 684—685 688 690 694 696—697 722
Student t distribution, moments 201—202
Student t distribution, relationship to chi square distribution 476
Student t distribution, relationship to F distribution 476—477
Student t distribution, table 481—482 853—855
Studentized range 748 872—873
Subhypothesis 747—748 751—754
Sufficient estimator, definition 398 401—402
Sufficient estimator, examples 398—400
Sufficient estimator, exponential form 405
Sufficient estimator, factorization criterion 403
Sufficient estimator, relationship to maximum likelihood estimator 404
Sufficient estimator, relationship to minimum variance, unbiased estimator 405
Test statistic 433
Testing, a single mean with variance known 435
Testing, a single mean with variance unknown 490 519—521
Testing, a single median 804
Testing, a single proportion 440
Testing, a single variance 504 516—519
Testing, for goodness-of-fit 606—607 616 642—644
Testing, for independence 627—631 685
Testing, for randomness 836
Testing, subhypotheses 747—748 754
Testing, that correlation coefficient is zero 720—721 723
Testing, the equality of k location parameters (dependent samples) 832
Testing, the equality of k location parameters (independent samples) 826—827
Testing, the equality of k means (dependent samples) 777
Testing, the equality of k means (independent samples) 737—739
Testing, the equality of two location parameters (dependent samples) 807
Testing, the equality of two location parameters (independent samples) 822—823
Testing, the equality of two means (dependent samples) 789
Testing, the equality of two means (independent samples) 557 563 567
Testing, the equality of two proportions (independent samples) 578
Testing, the equality of two slopes (independent samples) 697
Testing, the equality of two variances (independent samples) 569
Testing, the parameter of Poisson distribution 457—458
Testing, the parameter of uniform distribution 462—465
Testing, the slope of a regression line 685
Threshold parameter 351
Treatment 523—524
Treatment sum of squares 735—738 754 766—767 776
Trinomial distribution 605
Tukey’s test 747—750 781—782
Two-sample data 529—530 554—555 569 578 582 585 587 822
Two-sample t test 554 557 697 745—746 796—800
Type I error 447—448 457—458 747
Type II error 447—459
Unbiased estimator 381—385
Uniform distribution 163—164 207—209 304—305 382—383 390—391 462—465
union 28
Variance see also "Sample variance"
Variance, computing formula 195
Variance, confidence interval 501
Variance, definition 194
Variance, in hypothesis tests 504 569
Variance, lower bound (Cramer — Rao) 394
Variance, of a function 237—240
Variance, of a sum 234—236 705 753
Variance, properties 197
Venn diagrams 33—35 39 45—46
Weak law of large numbers 409
Wilcoxon rank sum test 822—824
Wilcoxon signed rank test 810—822 847 874—875
Ðåêëàìà