Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Larsen R.J., Marx M.L. — Introduction to Mathematical Statistics and Its Applications, An (4th Edition)
Larsen R.J., Marx M.L. — Introduction to Mathematical Statistics and Its Applications, An (4th Edition)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Introduction to Mathematical Statistics and Its Applications, An (4th Edition)

Àâòîðû: Larsen R.J., Marx M.L.

Àííîòàöèÿ:

I am surprised by the number of negative reviews for what I consider to be a nicely written, well thought out, and logically presented introductory course on mathematical statistics. Yes, a working knowledge of elementary calculus is a prerequisite. But the mathematics invoked in the exposition of concepts and theorems are kept as simple as possible while maintaining that modest level of rigor appropriate for a introductory exposition. If you do not have the minimal mathematical prerequisites (such as freshman calculus), blame your instructor or your school for selecting an inappropriate text. But don't blame the authors! I thought the examples and problems were appropriate in their level of difficulty (mostly not so hard) and the relation to the material just covered. There are plenty of poorly written, impossibly dry, inpenetrable texts on statistics out there - this is not one of them. In addition, the book is attractively packaged, the paper quality is excellent, the visuals are informative and clearly presented - that also should not be taken for granted. Lastly the authors have a wicked entertaining sense of humor that spice the presentation throughout. I consider this book to be a welcome addition to the set of modern textbooks available to the curious serious student of probability and statistics.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 4

Ãîä èçäàíèÿ: 2005

Êîëè÷åñòâî ñòðàíèö: 928

Äîáàâëåíà â êàòàëîã: 02.10.2015

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Normal distribution, in linear model      678—679
Normal distribution, independence of sample mean and sample variance      474 514—516
Normal distribution, moment-generating function      260 311
Normal distribution, Moments      308
Normal distribution, parameter estimation      353—354 383—384
Normal distribution, relationship to chi square distribution      474 476
Normal distribution, table      294—297 851—852
Normal distribution, transformation to standard normal      267—268 308
Normal distribution, unbiased estimator for variance      383—384 683—684
Null hypothesis      428 436
One-sample data      435 440 483 490 501 504 528—529 804
One-sample t test      489—490 513—514
Operating characteristic curve      146
Order statistics, definition      241
Order statistics, estimates based on      350—351
Order statistics, joint pdf      246—247
Order statistics, probability density function for ith      242—244
Outliers      640—642
p-value      437—438
Paired data      532 788 807—808 820—822
Paired t test      789—793 796—800
pairwise comparisons      see "Tukey’s test"
Palindrome      103—104
PARAMETER      344
Parameter space      463—465
Pareto distribution      356
Partitioned sample space      56—57 63 410—411
Pascal’s triangle      110
Pearson product moment correlation coefficient      709
Permutations objects all distinct      93
Permutations objects not all distinct      100
Poisson distribution, additive property      267
Poisson distribution, approximated by normal distribution      305—306
Poisson distribution, as limit of binomial distribution      276—277
Poisson distribution, definition      281
Poisson distribution, hypothesis test      457—458
Poisson distribution, moment-generating function      265
Poisson distribution, Moments      265 281
Poisson distribution, parameter estimation      352—353 402 411—412 422
Poisson distribution, relationship to exponential distribution      289—290
Poisson distribution, relationship to gamma distribution      327 415
Poisson distribution, square root transformation      759
Poisson model      284—285
Poker hands      119—121
Political arithmetic      7—10
Posterior distribution      412—416
Power      449—454 771
Power curve      450 466—468
Prediction interval      695—696
Prior distribution      411—416
Probability density function (pdf)      155 168—169 215 220 223—225
Probability function      36—38 149 161—163
Probability, axiomatic definition      23 36—38
Probability, classical definition      6 22 113
Probability, empirical definition      22—23 125—127
Problem of points      7
Producer’s risk      459
Propagation of errors      237—240
Qualitative measurement      525—527
Quantitative measurement      525—526
Random Mendelian mating      73
Random sample      219
Random variable      129 149 154 168—169
Randomized block data      532—534 773—774
Randomized block design, block sum of squares      776
Randomized block design, comparison with completely randomized one-factor design      780
Randomized block design, computing formulas      778
Randomized block design, error sum of squares      775—776
Randomized block design, notation      774
Randomized block design, relationship to paired t test      794—795
Randomized block design, test statistic      111
Randomized block design, treatment sum of squares      776
RANGE      247—248
Rank sum test      see "Wilcoxon rank sum test"
Rayleigh distribution      181—182
Rectangular distribution      see "Uniform distribution"
Regression curve      677—679 720
Regression data      534—535 647 677—679 702
Relative efficiency      388—393
Repeated independent trials      78
Residual      650
Residual plot      650—655
Risk      420—422
Robustness      485 493—498 560 623 803 841—846
runs      835—838
Sample correlation coefficient, definition      709—710
Sample correlation coefficient, in tests of independence      721—723
Sample correlation coefficient, interpretation and misinterpretation      709—714 725
Sample outcome      24
Sample size determination      373—374 454—455 552
Sample space      24 56—57
Sample standard deviation      384
Sample variance      384 555 683—684 697 737 776
Sampling plan      145—146
Serial number analysis      391—393
Sign test      804—808 846
Signed rank test      see "Wilcoxon signed rank test"
skewness      200
Spurious correlation      725
Square root transformation      759
Squared-error consistent      409
St. Petersburg paradox      180—181
Standard deviation      195 384
Standard normal distribution, definition      294
Standard normal distribution, in central limit theorem      302 307
Standard normal distribution, in de Moivre — Laplace limit theorem      293
Standard normal distribution, table      294—296 851—852
Standard normal distribution, Z transformation      267—268 308 312
Statistic      346
Statistically significant      433
Stirling’s formula      96 102
Student t distribution, approximated by standard normal distribution      470—472 478—479
Student t distribution, definition      476—478
Student t distribution, in inferences about difference between two dependent means      789
Student t distribution, in inferences about difference between two independent means      519—521 555 557 563 567
Student t distribution, in inferences about single mean      482—483 489—490
Student t distribution, in regression analysis      684—685 688 690 694 696—697 722
Student t distribution, moments      201—202
Student t distribution, relationship to chi square distribution      476
Student t distribution, relationship to F distribution      476—477
Student t distribution, table      481—482 853—855
Studentized range      748 872—873
Subhypothesis      747—748 751—754
Sufficient estimator, definition      398 401—402
Sufficient estimator, examples      398—400
Sufficient estimator, exponential form      405
Sufficient estimator, factorization criterion      403
Sufficient estimator, relationship to maximum likelihood estimator      404
Sufficient estimator, relationship to minimum variance, unbiased estimator      405
Test statistic      433
Testing, a single mean with variance known      435
Testing, a single mean with variance unknown      490 519—521
Testing, a single median      804
Testing, a single proportion      440
Testing, a single variance      504 516—519
Testing, for goodness-of-fit      606—607 616 642—644
Testing, for independence      627—631 685
Testing, for randomness      836
Testing, subhypotheses      747—748 754
Testing, that correlation coefficient is zero      720—721 723
Testing, the equality of k location parameters (dependent samples)      832
Testing, the equality of k location parameters (independent samples)      826—827
Testing, the equality of k means (dependent samples)      777
Testing, the equality of k means (independent samples)      737—739
Testing, the equality of two location parameters (dependent samples)      807
Testing, the equality of two location parameters (independent samples)      822—823
Testing, the equality of two means (dependent samples)      789
Testing, the equality of two means (independent samples)      557 563 567
Testing, the equality of two proportions (independent samples)      578
Testing, the equality of two slopes (independent samples)      697
Testing, the equality of two variances (independent samples)      569
Testing, the parameter of Poisson distribution      457—458
Testing, the parameter of uniform distribution      462—465
Testing, the slope of a regression line      685
Threshold parameter      351
Treatment      523—524
Treatment sum of squares      735—738 754 766—767 776
Trinomial distribution      605
Tukey’s test      747—750 781—782
Two-sample data      529—530 554—555 569 578 582 585 587 822
Two-sample t test      554 557 697 745—746 796—800
Type I error      447—448 457—458 747
Type II error      447—459
Unbiased estimator      381—385
Uniform distribution      163—164 207—209 304—305 382—383 390—391 462—465
union      28
Variance      see also "Sample variance"
Variance, computing formula      195
Variance, confidence interval      501
Variance, definition      194
Variance, in hypothesis tests      504 569
Variance, lower bound (Cramer — Rao)      394
Variance, of a function      237—240
Variance, of a sum      234—236 705 753
Variance, properties      197
Venn diagrams      33—35 39 45—46
Weak law of large numbers      409
Wilcoxon rank sum test      822—824
Wilcoxon signed rank test      810—822 847 874—875
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå