Авторизация
Поиск по указателям
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1)
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Abstract Harmonic Analysis (Vol. 1)
Авторы: Hewitt E., Ross K.A.
Аннотация: Abstract theory remains an indispensable foundation for the study of concrete cases. It shows what the general picture should look like and provides results that are useful again and again. Despite this, however, there are few, if any introductory texts that present a unified picture of the general abstract theory.A Course in Abstract Harmonic Analysis offers a concise, readable introduction to Fourier analysis on groups and unitary representation theory. After a brief review of the relevant parts of Banach algebra theory and spectral theory, the book proceeds to the basic facts about locally compact groups, Haar measure, and unitary representations, including the Gelfand-Raikov existence theorem. The author devotes two chapters to analysis on Abelian groups and compact groups, then explores induced representations, featuring the imprimitivity theorem and its applications. The book concludes with an informal discussion of some further aspects of the representation theory of non-compact, non-Abelian groups.
Язык:
Рубрика: Математика /Анализ /Продвинутый анализ /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: Second Edition
Год издания: 1979
Количество страниц: 519
Добавлена в каталог: 02.04.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Lorentz, G. G. 245
Los, J. 425
Lower semicontinuous function 121
Luthar, I. S. 245
Lyubarskii, G.Ya. 261
M(G) 269
M(G) = 273
M(G) is conjugate space of 170
M(G), is closed ideal 272
M(G), is closed ideal 271
M(G), is closed subalgebra 270
M(G), is closed linear subspace 273
M(G), 1-dimensional ideals of 309—310
M(G), adjoint operation in 300
M(G), commutative if and only if G is 302
Maak, W. 257 259 261 425
Macbeath, A.M. 229
Mackey, G. W. 229 398 421 425
Mapping 2
Markov, A. A. 32 51 83 104 106
Marriage lemma 248
Matrix (special types defined) 7
Matrix group 7 (see also “Linear group”)
Maximal ideal space 478
Mean 230 (see also “Invariant means”)
Measurable function 118 125
Measurable representation, weakly 335
Measurable set 125
Measure space, basis of 215
Measure space, character of 215
Measure space, complete 216
Measure space, extension of 216
Measure(s) 118
Measure(s), absolutely continuous 180 269
Measure(s), Caratheodory outer 123
Measure(s), concentrated on a set 180
Measure(s), continuous 269
Measure(s), convolution of 266
Measure(s), Haar 194 (see also “Haar measure”)
Measure(s), invariant finitely additive 242—245
Measure(s), inversion invariant 185
Measure(s), left invariant 185
Measure(s), product of 152
Measure(s), product of complex 182
Measure(s), purely discontinuous 269
Measure(s), regular 127
Measure(s), singular 180 269
Measure(s), support of 124
Measure(s), total variation of 169
mesh 13
Metrizability of topological groups 70
Michael, E.A. 83
Michelow, J. 113
Minimal divisible extension of a group 419 445—447
Minkowski’s inequality 138
Modular function 196
Modular function for 438
Modular function on closed normal subgroups 206
Monothetic group 85 390 407—409
Monothetic group, generators of 105 407 415
Monothetic group, largest 407
Monothetic semigroups 105
Montgomery, D. 32 51 66 76 83 106
Multiplicative function 345
Multiplicative linear functional 474
Multiplicity of family of sets 15
Munn, W. D. 282
Mycielski, J. 66
n-dimensional space, compact Hausdorff 15
n-dimensional space, complex and real 3
Nachbin, L. 354
Naimark, M.A. 135 166 334 353 354
Nakayama, T. 83 425
Natural mapping 4
Neighborhood (always open) 9
Net 14
Neumann, J. von 26 32 117 134 214 243 245 283 349 354 425
Nikodym, O.M. 150
Nondiscrete topologies for Abelian groups 27
Nondiscrete topologies for Z 27
Nonmeasurable sets 226
Nonnegative linear functional 461
Nonnegative linear functional on 120
Nonnormal groups 74—76
Norm 453
Norm in 3
Norm in 3
Norm in 135
Norm of linear function 454
Norm topology 454
Norm, uniform 119 230
Normal operator 467
Normal operator, existence of inverse 484
Normal subgroup 16
Normal topological group 16
Normality of locally compact groups 76
Normed -algebra 313
Normed algebra 469
Normed linear space 453
Normed linear space, reflexive 457
Normed linear space, weak topology 458
Normed linear space, weak- topology 458
Nowhere dense 456
Null function 124
Null set 124
Numakura, K. 106
Nussbaum, A. E. 399
Olmsted, J.M.H. 104
One-parameter subgroup 85
Open and closed subgroups 33—34 62
Operators 452
Operators, adjoint 466
Operators, Hermitian 467
Operators, normal 467
Operators, positive-definite 467
Operators, projection 467
Operators, sum of 468
Operators, unitary 467
Ordered groups 24
Orthogonal elements 465
Orthogonal group 7 (see also “ ”)
Orthogonal group, special 7 (see also “ ”)
Orthogonal matrix 7
Orthogonal set 465
Orthogonal sets 465
Orthonormal basis 465
Orthonormal set 465
Oxtoby, J.C. 215 229
p-adic integers 109 (see also “ ”)
p-adic number field 112 (see also “ ”)
p-adic numbers 109 (see also “ ”)
p-primary group 439
p-rank of a group 444
P-topology 361
Paley, R.E.A.C. 375
Paracompact space 13
Paracompactncss of locally compact groups 76
Partition of a set 2
Partitions of unity 9—10
Pasynkov, B. 398
Peres, J. 282
Permutation group 8
permutations 8
Peter, F. 213 283 311 353 354 375
Pierce, R. S. 413 425 449
Pitt, H.R. 282
Pontryagin — van Kampen duality theorem 378
Pontryagin — van Kampen duality theorem, uniqueness of T 424
Pontryagin, L. S. 32 51 60 80 83 103 106 354 375 397 398 399 424
Positive functional 316
Positive functional, extensible 317
Positive functional, nonextensible 331
Positive linear functional, strictly 461
Positive-definite operator 467
Positive-definite operator, spectrum is nonnegative 484
Positive-definite operator, square root of 484
Preston, G.C. 399
primary group 439
Product of characters 355
Product of complex measures 182
Product of functionals 152 159
Product of groups 6
Product of measures 152
Product of sets 2—3
Product of topological groups 52
Product of topological groups, character group of 362—365
Projection 54
Projection operator 467
Projective limit 56
Proper ideal, of an algebra 469
Proper subgroup 4
Prufer, H. 117
Pure independent set 448
Pure subgroups 447 395
Purely discontinuous measure 269
Quasi-inverse(s) 471
Quasi-inverse(s), form open set 472
Quaternions, Haar measure on 210
Quotient group 4 40
Quotient group, character group of 365
Quotient space 4 452
Quotient space, homogeneity of 37
Quotient space, topology of 36
r-adic integers 109 (see also “ ”)
r-adic numbers 109 (see also “ ”)
Radon — Nikodym theorem 144
Radon, J. 150
Raikov, D.A. 214 311 334 353 354 375 398
Raimi, R. A. 245
Rank of a group 444
Real algebra 469
Real characters 390 393
Real characters, extensibility of 391
Real linear space 452
Real matrix 7
Real n-dimensional space 3
Real-character group 390
Reduce 323
Reduced group 440
Reduced word 8
Reducible representation 323
Reducible set of operators 323
refinement 13
Reflexive space 457
Regular ideal 475
Regular left ideal 474
Regular measure 127
Regular representation 342
Regular topological space 9
Relatively bounded linear functional 461
Relatively invariant functionals 203
Relatively invariant functionals, examples 212
Representation space 313
Representation(s) of a group 312
Representation(s) of a semigroup 312
Representation(s) of an algebra 312
Representation(s) of an algebra with unit 313
Representation(s), continuous 341
Representation(s), cyclic 315
Representation(s), equivalent 314
Representation(s), invariant subspace under 313
Representation(s), irreducible 323
Representation(s), reducible 323
Representation(s), regular 342
Representation(s), strongly continuous 335
Representation(s), sufficiently many 343
Representation(s), weakly continuous 335
Representation(s), weakly measurable 335
Ricabarra, R. 375
Richardson, R.W. 94
Rickart, C. E. 334
Riesz, F. 134 150
Right Haar integral 195 (see also “Left Haar integral”)
Right Haar measure 195 (see also “Left Haar measure”)
Right unit relative to I 474—475 (see also “Left unit relative to I”)
Ring of sets 118
Riss, J. 398
Robertson, W. 372
Robison, G.B. 237
Rosen, W. G. 215
Rudin, W. 184 425
Ryll-Nardzewski, C. 393 398
Saks, S. 166
Samelson, H. 415 425
Scalar field 452
SCHONEBORN, H. 399
Schreier, O. 31 64 67
Schur, I. 213
Schur’s lemma 324
Schwartz, J.T. 149 166
Schwarz, S. 215 354
Schwarz’s inequality 464
Second category 456
Second character group 376
Second isomorphism theorem for groups 5
Second isomorphism theorem for topological groups 45
Sections 153
Segal, I.E. 3H 334 353 354
Self-dual groups 422
Semicharacter 345
Semicontinuous functions 121
Semidirect product of groups 6—7
Semidirect product of topological groups 58—59
Semidirect product, Haar measure on 210
Semigroup 4
Semigroup, cancellation 258
Semigroup, topological 98 233
Separate points 151
Shiga, K. 353
Signum (sgn) 3
Silverman, R. J. 245
Simple algebra 469
Simple semigroup 100—101
Singular measure 180 269
Skew-Hermitian matrix 7
Skew-symmetric matrix 7
Smith, M.F. 370 399
Solenoidal groups 85 409—410
Solenoidal groups, a-adic 114
Solenoidal groups, largest 410
Special linear group 7 (see also “ F)$"/>”)
Special orthogonal group 7 (see also “ ”)
Special unitary group 7 (see also “ ”)
Spectral theorem 488—491
Spectral theorem for Hermitian operators 491
Spectral theorem, applied 325
Spectrum 476
Spectrum is compact nonvoid 477
Square root of positive-definite operator 484
Sreider, Yu. A. 311
Steinhaus, H. 150
Stone — Weierstrass theorem 151 281—282
Stone, A.H. 83
Strictly positive linear functional 461
Stromberg, K. R. 397
Stronger topology 9
Strongly continuous representation 335
Struble, R. A. 261
Structure space 477—478
Structure theorem for locally compact, compactly generated Abelian groups 90
Реклама