Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1)
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Abstract Harmonic Analysis (Vol. 1)

Авторы: Hewitt E., Ross K.A.

Аннотация:

Abstract theory remains an indispensable foundation for the study of concrete cases. It shows what the general picture should look like and provides results that are useful again and again. Despite this, however, there are few, if any introductory texts that present a unified picture of the general abstract theory.A Course in Abstract Harmonic Analysis offers a concise, readable introduction to Fourier analysis on groups and unitary representation theory. After a brief review of the relevant parts of Banach algebra theory and spectral theory, the book proceeds to the basic facts about locally compact groups, Haar measure, and unitary representations, including the Gelfand-Raikov existence theorem. The author devotes two chapters to analysis on Abelian groups and compact groups, then explores induced representations, featuring the imprimitivity theorem and its applications. The book concludes with an informal discussion of some further aspects of the representation theory of non-compact, non-Abelian groups.


Язык: en

Рубрика: Математика/Анализ/Продвинутый анализ/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1979

Количество страниц: 519

Добавлена в каталог: 02.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Lorentz, G. G.      245
Los, J.      425
Lower semicontinuous function      121
Luthar, I. S.      245
Lyubarskii, G.Ya.      261
M(G)      269
M(G) = $M_d\oplus M_s\oplus M_a$      273
M(G) is conjugate space of $\mathfrak{G}_0(G)$      170
M(G), $M_a$ is closed ideal      272
M(G), $M_c$ is closed ideal      271
M(G), $M_d$ is closed subalgebra      270
M(G), $M_s$ is closed linear subspace      273
M(G), 1-dimensional ideals of      309—310
M(G), adjoint operation in      300
M(G), commutative if and only if G is      302
Maak, W.      257 259 261 425
Macbeath, A.M.      229
Mackey, G. W.      229 398 421 425
Mapping      2
Markov, A. A.      32 51 83 104 106
Marriage lemma      248
Matrix (special types defined)      7
Matrix group      7 (see also “Linear group”)
Maximal ideal space      478
Mean      230 (see also “Invariant means”)
Measurable function      118 125
Measurable representation, weakly      335
Measurable set      125
Measure space, basis of      215
Measure space, character of      215
Measure space, complete      216
Measure space, extension of      216
Measure(s)      118
Measure(s), absolutely continuous      180 269
Measure(s), Caratheodory outer      123
Measure(s), concentrated on a set      180
Measure(s), continuous      269
Measure(s), convolution of      266
Measure(s), Haar      194 (see also “Haar measure”)
Measure(s), invariant finitely additive      242—245
Measure(s), inversion invariant      185
Measure(s), left invariant      185
Measure(s), product of      152
Measure(s), product of complex      182
Measure(s), purely discontinuous      269
Measure(s), regular      127
Measure(s), singular      180 269
Measure(s), support of      124
Measure(s), total variation of      169
mesh      13
Metrizability of topological groups      70
Michael, E.A.      83
Michelow, J.      113
Minimal divisible extension of a group      419 445—447
Minkowski’s inequality      138
Modular function      196
Modular function for $\mathfrak{S}(G)$      438
Modular function on closed normal subgroups      206
Monothetic group      85 390 407—409
Monothetic group, generators of      105 407 415
Monothetic group, largest      407
Monothetic semigroups      105
Montgomery, D.      32 51 66 76 83 106
Multiplicative function      345
Multiplicative linear functional      474
Multiplicity of family of sets      15
Munn, W. D.      282
Mycielski, J.      66
n-dimensional space, compact Hausdorff      15
n-dimensional space, complex and real      3
Nachbin, L.      354
Naimark, M.A.      135 166 334 353 354
Nakayama, T.      83 425
Natural mapping      4
Neighborhood (always open)      9
Net      14
Neumann, J. von      26 32 117 134 214 243 245 283 349 354 425
Nikodym, O.M.      150
Nondiscrete topologies for Abelian groups      27
Nondiscrete topologies for Z      27
Nonmeasurable sets      226
Nonnegative linear functional      461
Nonnegative linear functional on $\mathfrac{G}_{00}$      120
Nonnormal groups      74—76
Norm      453
Norm in $K^n$      3
Norm in $l_p(X)$      3
Norm in $\mathfrac{L}_p(X,\iota)$      135
Norm of linear function      454
Norm topology      454
Norm, uniform      119 230
Normal operator      467
Normal operator, existence of inverse      484
Normal subgroup      16
Normal topological group      16
Normality of locally compact groups      76
Normed $\sim$-algebra      313
Normed algebra      469
Normed linear space      453
Normed linear space, reflexive      457
Normed linear space, weak topology      458
Normed linear space, weak-$\ast$ topology      458
Nowhere dense      456
Null function      124
Null set      124
Numakura, K.      106
Nussbaum, A. E.      399
Olmsted, J.M.H.      104
One-parameter subgroup      85
Open and closed subgroups      33—34 62
Operators      452
Operators, adjoint      466
Operators, Hermitian      467
Operators, normal      467
Operators, positive-definite      467
Operators, projection      467
Operators, sum of      468
Operators, unitary      467
Ordered groups      24
Orthogonal elements      465
Orthogonal group      7 (see also “$\mathfrac{D}(n)$”)
Orthogonal group, special      7 (see also “$\mathfrac{S}\mathfrac{D}(n)$”)
Orthogonal matrix      7
Orthogonal set      465
Orthogonal sets      465
Orthonormal basis      465
Orthonormal set      465
Oxtoby, J.C.      215 229
p-adic integers      109 (see also “$\Delta_p$”)
p-adic number field      112 (see also “$\Omega_r$”)
p-adic numbers      109 (see also “$\Omega_r$”)
p-primary group      439
p-rank of a group      444
P-topology      361
Paley, R.E.A.C.      375
Paracompact space      13
Paracompactncss of locally compact groups      76
Partition of a set      2
Partitions of unity      9—10
Pasynkov, B.      398
Peres, J.      282
Permutation group      8
permutations      8
Peter, F.      213 283 311 353 354 375
Pierce, R. S.      413 425 449
Pitt, H.R.      282
Pontryagin — van Kampen duality theorem      378
Pontryagin — van Kampen duality theorem, uniqueness of T      424
Pontryagin, L. S.      32 51 60 80 83 103 106 354 375 397 398 399 424
Positive functional      316
Positive functional, extensible      317
Positive functional, nonextensible      331
Positive linear functional, strictly      461
Positive-definite operator      467
Positive-definite operator, spectrum is nonnegative      484
Positive-definite operator, square root of      484
Preston, G.C.      399
primary group      439
Product of characters      355
Product of complex measures      182
Product of functionals      152 159
Product of groups      6
Product of measures      152
Product of sets      2—3
Product of topological groups      52
Product of topological groups, character group of      362—365
Projection      54
Projection operator      467
Projective limit      56
Proper ideal, of an algebra      469
Proper subgroup      4
Prufer, H.      117
Pure independent set      448
Pure subgroups      447 395
Purely discontinuous measure      269
Quasi-inverse(s)      471
Quasi-inverse(s), form open set      472
Quaternions, Haar measure on      210
Quotient group      4 40
Quotient group, character group of      365
Quotient space      4 452
Quotient space, homogeneity of      37
Quotient space, topology of      36
r-adic integers      109 (see also “$\Delta_p$”)
r-adic numbers      109 (see also “$\Omega_r$”)
Radon — Nikodym theorem      144
Radon, J.      150
Raikov, D.A.      214 311 334 353 354 375 398
Raimi, R. A.      245
Rank of a group      444
Real algebra      469
Real characters      390 393
Real characters, extensibility of      391
Real linear space      452
Real matrix      7
Real n-dimensional space      3
Real-character group      390
Reduce      323
Reduced group      440
Reduced word      8
Reducible representation      323
Reducible set of operators      323
refinement      13
Reflexive space      457
Regular ideal      475
Regular left ideal      474
Regular measure      127
Regular representation      342
Regular topological space      9
Relatively bounded linear functional      461
Relatively invariant functionals      203
Relatively invariant functionals, examples      212
Representation space      313
Representation(s) of a group      312
Representation(s) of a semigroup      312
Representation(s) of an algebra      312
Representation(s) of an algebra with unit      313
Representation(s), continuous      341
Representation(s), cyclic      315
Representation(s), equivalent      314
Representation(s), invariant subspace under      313
Representation(s), irreducible      323
Representation(s), reducible      323
Representation(s), regular      342
Representation(s), strongly continuous      335
Representation(s), sufficiently many      343
Representation(s), weakly continuous      335
Representation(s), weakly measurable      335
Ricabarra, R.      375
Richardson, R.W.      94
Rickart, C. E.      334
Riesz, F.      134 150
Right Haar integral      195 (see also “Left Haar integral”)
Right Haar measure      195 (see also “Left Haar measure”)
Right unit relative to I      474—475 (see also “Left unit relative to I”)
Ring of sets      118
Riss, J.      398
Robertson, W.      372
Robison, G.B.      237
Rosen, W. G.      215
Rudin, W.      184 425
Ryll-Nardzewski, C.      393 398
Saks, S.      166
Samelson, H.      415 425
Scalar field      452
SCHONEBORN, H.      399
Schreier, O.      31 64 67
Schur, I.      213
Schur’s lemma      324
Schwartz, J.T.      149 166
Schwarz, S.      215 354
Schwarz’s inequality      464
Second category      456
Second character group      376
Second isomorphism theorem for groups      5
Second isomorphism theorem for topological groups      45
Sections      153
Segal, I.E.      3H 334 353 354
Self-dual groups      422
Semicharacter      345
Semicontinuous functions      121
Semidirect product of groups      6—7
Semidirect product of topological groups      58—59
Semidirect product, Haar measure on      210
Semigroup      4
Semigroup, cancellation      258
Semigroup, topological      98 233
Separate points      151
Shiga, K.      353
Signum (sgn)      3
Silverman, R. J.      245
Simple algebra      469
Simple semigroup      100—101
Singular measure      180 269
Skew-Hermitian matrix      7
Skew-symmetric matrix      7
Smith, M.F.      370 399
Solenoidal groups      85 409—410
Solenoidal groups, a-adic      114
Solenoidal groups, largest      410
Special linear group      7 (see also “$\mathfrak{S}\mathfrak{L}(n</a></span> <span class=subjpages><a href=F)$"/>”)
Special orthogonal group      7 (see also “$\mathfrak{S}\mathfrak{D}(n)$”)
Special unitary group      7 (see also “$\mathfrak{S}\mathfrak{U}(n)$”)
Spectral theorem      488—491
Spectral theorem for Hermitian operators      491
Spectral theorem, applied      325
Spectrum      476
Spectrum is compact nonvoid      477
Square root of positive-definite operator      484
Sreider, Yu. A.      311
Steinhaus, H.      150
Stone — Weierstrass theorem      151 281—282
Stone, A.H.      83
Strictly positive linear functional      461
Stromberg, K. R.      397
Stronger topology      9
Strongly continuous representation      335
Struble, R. A.      261
Structure space      477—478
Structure theorem for locally compact, compactly generated Abelian groups      90
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте