Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Ehrenreich H., Spaepen F. — Solid State Physics.Volume 55.
Ehrenreich H., Spaepen F. — Solid State Physics.Volume 55.



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Solid State Physics.Volume 55.

Àâòîðû: Ehrenreich H., Spaepen F.

Àííîòàöèÿ:

The present volume deals with four diverse areas of considerable interest and importance: organic electronic device physics, charge density waves in nanocrystals, shape memory alloys, and grain growth of cellular structures.

First part presents a comprehensive survey of the basic physics underlying organic electronic devices, in particular, the most studied examples of light-emitting diodes (LEDs) and field-effect
transistors. This exciting new area is rapidly unfolding in some ways, as the authors point out, analogously to the early development of inorganic semiconductor devices.
The second part describes the formation of charge density waves (CDWs) in 2D nanostructures, in particular, transition metal dichalcogenides (TMDs).
The third part is devoted to the vibrational propertles of shape-memory alloys. The shape-memory effect in certain metallic alloys is made possible by a reversible martensitic transformation. Shape-memory alloys have several technological applications, from safety valves to, most recently, micro-electromechanical systems (MEMS).
The last part reviews our understanding of the evolution of materials that are divided up into cells by internal surfaces, such as polycrystals or foams. The evolution is a type of coarsening, driven by a
continuous decrease in the total interfacial area. In polycrystals the phenomenon is known as grain growth.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 349

Äîáàâëåíà â êàòàëîã: 22.02.2015

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Organic electronic materials, metal/organic interface electronic structure      24—54
Organic electronic materials, solid state properties      21—24
Organic field-effect transistors (FETs)      2—4
Organic field-effect transistors (FETs), device model      108—113
Organic field-effect transistors (FETs), device structure      9—10
Organic field-effect transistors (FETs), electronic transport properties      55—56
Organic light-emitting diodes (LEDs)      2—3
Organic light-emitting diodes (LEDs), bipolar devices      93—98
Organic light-emitting diodes (LEDs), device model      79—84
Organic light-emitting diodes (LEDs), device structure      8—9
Organic light-emitting diodes (LEDs), electronic transport properties      55—56
Organic light-emitting diodes (LEDs), high current density operation      105—108
Organic light-emitting diodes (LEDs), multilayer devices      98—105
Organic light-emitting diodes (LEDs), Schottky energy barriers      24 31 32—45
Organic light-emitting diodes (LEDs), single-carrier devices      84—93
Organic light-emitting diodes (LEDs), transient response      105—108
Ortin, J.      171 172(38—39) 173(49) 174(50 55) 188 193(109) 218(164) 219(168) 221(169 172) 222 229 267
Oshima, R.      178(73—74)
Otsuka, K.      171 171(32) 197 197(117—118) 201(133) 202 203(135) 209(144) 233(195) 236 253(232)
Pai, D.M.      66(172)
Pak, H.R.      218(163)
Pakbaz, K.      5(40)
Palmer, J.E.      296(80)
Palmer, M.A.      296(73—74 76—77)
Pande, C.S.      283 283(28)
Pankratov, O.      150(65)
Pannetier, B.      157(75)
Papadimitrakopoulos, F.      98(200)
Park, C.      148(61)
Park, H.      124(26)
Park, J.      124(26)
Park, Y.      84(196)
Parker, I.D.      24(124) 32(133) 102(203)
Parris, P.E.      68(177—181)
Partee, J.      57(167)
Parthasarathy, G.      9(54—55) 115(218)
Pasch, G.      77(187)
Pascual, R.      173(43)
Pati, S.K.      19(99)
Peak, M.S.      254(235)
Pei, Q.B.      115(212 222 226)
Peierls, R.E.      122 122(12)
Pelegrina, J.L.      191 197(119 121) 198 219 219(167) 226
Pentacene      4 5
Pentacene, carrier mobility measurements      61 63
Pentacene, exciton binding energy      45—46
Pentacene, hole mobility      77
Pentacene, Schottky energy barrier      41—43
Penzkofer, A.      8(51)
Pepperhoff, W.      252(230)
Perel, V.I.      79(194)
Perenboom, J.A.A.J.      121(7)
Perez-Magrane, R.      173(49)
Perkovic, O.      174(52)
Persson, B.N.I.      142(47 49)
Petritsch, K.      9(64)
Petti, E.      258(248)
Pettifor, D.      164(21)
Petty, W.      179(81) 180(83) 181(87) 200 200(126—128)
Peyghambarian, N.      3(16) 98(202)
PFO (poly(9, 9-dioctylfluorene)), carrier mobility      72—73
Philips, W.A.      224(179)
Phillips, R.T.      7(45)
Phonon dispersion, shape-memory alloys      199—210 256
Pichler, K.      9(63)
Pichlmaier, M.      8(51)
Pine, D.J.      313(111)
Pinner, D.J.      105(208) 115(217)
Pinto, M.R.      10(73)
Pittet, N.      312(107)
Planes, A.      165 168(31) 171 172(38—39) 173(41—42 47—49) 174(50 54—55) 188 188(100) 191 192 193(109—110) 194 195 197(121) 198 207 212(155) 214 218(164) 219(165) 220 221(169 172) 222 229 231(185 187) 232(190—191) 237(204) 238 239 240 257(246) 258(247) 259 260(250 252)
Planes, Antoni      159
Plummer, E.W.      123(20)
Poly(9, 9-dioctylfluorene)      see "PFO"
Polycrystalline materials, films      293—304
Polycrystalline materials, foils      293—296
Polycrystalline materials, grain growth      270 313—314
Polycrystalline materials, grain growth, alloy additions      304—305
Polycrystalline materials, grain growth, Burke — Turnbull model      270—271
Polycrystalline materials, grain growth, films      293—304
Polycrystalline materials, grain growth, foils      293—296
Polycrystalline materials, grain growth, mean field models      279—286 306
Polycrystalline materials, grain growth, simulations      286—290
Polycrystalline materials, grain growth, three-dimensional systems      305—313
Polycrystalline materials, grain growth, two-dimensional systems      271—279 290—293
Poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-1, 4-phenylene vinylene]      see "MEH-PPV"
Pommerehne, J.      105(209)
Pons, J.      254(237) 255 256(243)
Pope, M.      2(3)
Popovis, I.G.      143(53)
Porta, M.      224(178) 267
Pourmirzaie, F.      3(11)
PPV (poly(p-phenylene vinylene)      4—6 16—18
Prause, B.      313(115)
Prause, P.      313 313(114)
Predel, B.      167(24)
Priestley, R.      7(42)
Primary recrystallization      295
Probst, M.      47(145)
Purushothaman, S.      4(32)
Putnis, A.      178(71)
Pynn, R.      199(124) 200(130) 202 203(134) 209(145) 221(173) 224
Qiu, X.      121(5)
Quattrocchi, C.      7(44) 19(104)
Rafols, I.      173(49)
Rajagopal, A.      41(140) 44(143)
Rajan, K.      296(73—74 76—77)
Raju, V.R.      4(27 31)
Ralph, D.C.      121(8) 124(22)
Ramasesha, S.      18(82) 19(99) 20(107 109)
Rapacioli, R.      173(43) 232(191) 233(193)
Rauch, P.      123(17)
Raueso, S.A.      293(63)
Raymond, S.      203(135)
Recrystallization      270 293 295
Redecker, M.      54(151—152)
Reed, M.      120(1)
Remmers, M.      7(44)
Ren, X.      197 197(117) 233(195) 236
Resel, R.      57(165—166)
Rhuele, M.      178(70)
Rice, M.J.      19(93 100—101)
Rice, T.M.      123(14)
Richter, D.      223(176)
Riege, S.P.      297(83)
Rifkin, J.A.      179(80)
Rios-Jara, D.      174(57) 188 193(109) 197(120) 203(134) 209(145) 229 267
Rivier, N.      275 275(6) 278 278(16) 307(98)
Roberts, B. W.      174(51)
Robertson, I.M.      178(72)
Robinson, J.      256(239)
Robinson, R.A.      199(124) 202
Robinson, R.B.      155(68—69)
Rodriguez, P.L.      197 197(119)
Rogers, J.      4(27)
Rogers, J.A.      10(72)
Rohlfing, M.      22(116)
Roitburd, A.L.      160(5)
Roitman, D.      3(10)
Roitman, D.B.      3(11)
Romero, R.      165 219 219(165 167) 224(180) 226 231(187) 232(190)
Rosen, M.      173(44)
Rost, H.      9(65) 40(139)
Roth, R.      123(21)
Rothberg, L.J.      2(5) 9(57) 10(68) 49(148) 98(200)
Rotzinger, F.      49(149)
Rouby, D.      173(47—48)
Rouxel, J.      123(13)
Rowe, J.      29(131)
Rubin, S.      49(146)
Rubini, S.      167 223(174)
Rubio, A.      145(57)
Ruoff, R.S.      157(77)
Ryum, N.      283 283(27) 289(54 59—60) 291
Saburi, T.      163(16) 167(24)
Sade, M.      197(119)
Saetre, T.O.      289(59—60) 291
Safran, S.A.      303(87)
Sahni, P.S.      286(36—37)
Sakamoto, H.      171 171(32)
Salamon, M.B.      177(64—65)
Salanceck, W.R.      23(118)
Salaneck, W.R.      23(120—121) 40(139)
Salem, J.R.      24(123) 55(153)
Salje, E.      178(71)
SAM      see "Self-assembled monolayer"
Sampietro, M.      115(224)
Samuel, I.D.W.      7(45) 80(195)
Sanati, M.      235(202)
Sano, T.      47(144)
Sariciftci, N.S.      38(137)
Sarpeshkar, R.      4(31) 115(229)
Saunders, G.A.      184 184(90) 185(94) 210(149) 211 216 216(159) 267
Saxena, A.      15(76) 18(80—81) 19(87) 26(130) 235(202) 244(207)
Saxena, Avadh      117
Scanning probe microscopes, nanostructure creation      125—126 132—142
Scanning tunneling microscopes (STMs), nanostructure creation      125
Schafer, H.      131(42)
Scheinert, S.      77(187)
Schenk, R.      19(104)
Scherf, U.      67(175) 115(219 224)
Schimetta, M.      7(46)
Schlittler, R.R.      125(31)
Schlom, D.G.      5(37)
Schluter, M.      155(70)
Schmahl, W.W.      178(71)
Schmidt, A.      44(142)
Schober, H.R.      179(81) 181(87) 200(126—127)
Schoenfeld, B.      201(131)
Scholte, P.M.L.O.      121(9)
Scholz, G.A.      156(73)
Schon, H.J.      57(168)
Schon, J.H.      22(117)
Schottky energy barrier at metal/organic interface      24 31 32—45
Schottky energy barrier, Alq      43—45
Schottky energy barrier, manipulating using dipole layers      49—54
Schottky energy barrier, MEH-PPV      32—41
Schottky energy barrier, pentacene      41—43
Schottky energy barrier, self-assembled monolayer (SAM) and      49—54
Schrieffer, J.R.      2(1)
Schryvers, D.      176 176(61) 178 202 204
Schwartz, A.      256(240) 257 258
Schwartz, B.J.      115(212—213)
Schweizer, E.K.      125(28)
Scott, C.      55(153)
Scott, J.C.      9(58) 24(123) 55(160)
Second-order elastic constant (SOEC)      182
Second-order elastic constant (SOEC), martensitic transition of shape-memory alloys      187—199
Seel, Steve      314
Segel, D.      286 286(35)
Segui, C.      219(168) 254(237) 255 256(243)
Seidler, P.F.      36(134)
Self-assembled monolayer (SAM), Schottky barrier and      49—54
Semenovskaya, S.      246(216)
Seshadri, R.      293(66)
Sethna, J. P.      174 174(51—53) 179(77—79)
Shaheen, S.E.      3(16) 98(202)
Shape-memory alloys      160 265—267
Shape-memory alloys, ferromagnetic      161 252—265
Shape-memory alloys, lattice dynamics      181 266
Shape-memory alloys, lattice dynamics, elastic behavior      181—186
Shape-memory alloys, lattice dynamics, Grueneisen parameters      186—187
Shape-memory alloys, martensitic transition      160 162—164 266—267
Shape-memory alloys, martensitic transition, experimental results      187—216
Shape-memory alloys, martensitic transition, Grueneisen parameters      186—187 210—216
Shape-memory alloys, martensitic transition, kinetics      172—174
Shape-memory alloys, martensitic transition, magnetic coupling      252—265
Shape-memory alloys, martensitic transition, modeling      233—252 262—264
Shape-memory alloys, martensitic transition, phase diagram      164—171
Shape-memory alloys, martensitic transition, phase stability      217—233
Shape-memory alloys, martensitic transition, phonon dispersion      199—210 256
Shape-memory alloys, martensitic transition, precursor effects      175—180 256
Shape-memory alloys, martensitic transition, second-order elastic constants      187—199
Shape-memory alloys, martensitic transition, thermodynamics      172—174 217—221
Shape-memory alloys, martensitic transition, third-order elastic constants      210—216
Shape-memory alloys, martensitic transition, vibrational anharmonicity      186—187 210—216
Shapiro, S.M.      176 176(61) 177(64 66) 178 179 179(76) 180(84) 201(133) 202 203(135) 204 205(139—140) 246(216) 256(240—241) 257 258 259(249)
Shavrov, V.G.      264(256)
Shaw, J.M.      4(32)
Shaw, T.M.      125(34)
Sheats, J.      3(11)
Sheats, J.R.      3(10)
Sheehan, P.E.      125(36)
Shen, T.-C.      142(52)
Shen, T.C.      124(25)
Shen, Z.      2(6) 3(12) 55(154)
Shen, Z.L.      115(227)
Shi, J.      2(7)
Shibata, K.      47(144)
Shiino, O.      148(61)
Shimada, M.      5(39)
Shimitzu, K.      171 171(32)
Shimoi, Y.      18(83—85) 20(110)
Shinar, J.      9(61) 57(167)
Shirane, G.      180(84) 193(111) 200(129)
Shirota, Y.      98(201)
Shkunov, M.      115(220)
Shore, J.D.      174(51)
Shoustikov, A.      3(19)
Shuai, Z.      9(67) 18(78) 19(96 99 105
Shvindlerman, L.S.      285(30) 295(72)
SiAhmed, L.      49(149)
Sibley, S.      3(19) 3(21)
Silbey, R.      20(112)
Silinsh, E.A.      25(127)
Simmons, J.A.      173(45)
Simon, A.J.      293(64)
Simulations, grain growth in polycrystalline materials      286—290 309—312
Sinclair, M.B.      60(169)
Singh, K.K.      178(71)
Singh, R.C.      165
Singh, V.V.      304(91)
Single-carrier organic light-emitting diodes (LEDs)      84—93
Single-carrier SCL diodes, carrier mobility      63—66
Singleton, M.F.      167
Sirringhaus, H.      4(23—24)
Skala, S.      123(18)
Skriver, H.L.      217(161)
Slough, C.C.      123(16)
Slusher, R.E.      9(57)
Slyozov, V.V.      280 280(20)
Smith, C.S.      275 275(10) 305(95)
Smith, D.L.      1 8(52) 15(76) 19(87—88) 21(113) 26(128—130) 32(133) 38(136) 43(141) 49(146—147) 54(150) 55(163) 63(170) 65(171) 77(184) 88(198) 102(204) 106(211)
Smith, H.I.      296(80) 297(82)
Smits, A.B.      121(9)
Snow, E.S.      125(35)
Soap froth, evolution      289 290—292
SOEC      see "Second-order elastic constant"
Sokolowski, M.      8(49)
Somoza, A.      232(190)
Sonoda, Y.      23(120)
Soos, Z.G.      18(82) 20(107—109)
Sotgui, R.      115(224)
Spaepen, Frans      314
Spencer, G.C.W.      6(41)
Sperry, P.R.      293(68)
Spiering, A.J.H.      4(24)
Squires, G.L.      199(124) 202
Srolovitz, D.J.      286(36—37) 303(87) 306(97) 308(102)
Stach, E.A.      303(90)
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå