Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Ehrenreich H., Spaepen F. — Solid State Physics.Volume 55.
Ehrenreich H., Spaepen F. — Solid State Physics.Volume 55.



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Solid State Physics.Volume 55.

Àâòîðû: Ehrenreich H., Spaepen F.

Àííîòàöèÿ:

The present volume deals with four diverse areas of considerable interest and importance: organic electronic device physics, charge density waves in nanocrystals, shape memory alloys, and grain growth of cellular structures.

First part presents a comprehensive survey of the basic physics underlying organic electronic devices, in particular, the most studied examples of light-emitting diodes (LEDs) and field-effect
transistors. This exciting new area is rapidly unfolding in some ways, as the authors point out, analogously to the early development of inorganic semiconductor devices.
The second part describes the formation of charge density waves (CDWs) in 2D nanostructures, in particular, transition metal dichalcogenides (TMDs).
The third part is devoted to the vibrational propertles of shape-memory alloys. The shape-memory effect in certain metallic alloys is made possible by a reversible martensitic transformation. Shape-memory alloys have several technological applications, from safety valves to, most recently, micro-electromechanical systems (MEMS).
The last part reviews our understanding of the evolution of materials that are divided up into cells by internal surfaces, such as polycrystals or foams. The evolution is a type of coarsening, driven by a
continuous decrease in the total interfacial area. In polycrystals the phenomenon is known as grain growth.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 349

Äîáàâëåíà â êàòàëîã: 22.02.2015

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Kivelson, S.      2(1)
Kiwabara, A.      205(138)
Klein, D.L.      123(21)
Klimov, V.      19(102)
Kloc, C.      57(168)
Kloc, Ch.      22(117)
Knight, M.D.      143(56)
Knobler, C.M.      293(63)
Kobayashi, K.      142(51)
Koch, N.      57(166)
Kohler, A.      9(67)
Kojima, S.      197(118)
Kokorin, V.V.      254(237) 255 256(239 242—243) 257(244—246) 258 259
Kondo, S.      156(72)
KoppingGrem, G.      7(46)
Kouki, F.      4(28) 10(69)
Kozlov, V.G.      9(54) 115(218)
Kragler, R.      185(92)
Kramer, E.J.      181(87)
Kraus, A.B.      9(67)
Kravchenko, A.S.      285(30) 295(72)
Kress, J.D.      21(113) 49(146—147)
Kress, Joel      117
Krichevsky, O.      286(35)
Krishnan, R.V.      164(18)
Krumhansl, J.A.      163(14) 174(51) 175(60) 179(77—79) 180(82 85) 185(96—97) 196(113—114) 206 210(148) 224(177) 234(197) 235(201) 238 242(205) 243 251(226 228) 267
Kuentzler, R.      223 223(175)
Kugler, T.      23(118) 40(139)
Kukla, A.M.      256(239)
Kulkarni, S.D.      166(23)
Kuprat, A.      288(48—49)
Kurtz, S.K.      309(103)
Kus, M.      68(179 181)
Kwock, E.W.      19(89)
Kwong, R.C.      3(21)
Kyllo, E.M.      7(47)
Kymissis, J.      4(32)
L'vov, V.A.      264(255)
Labarta, A.      260(252)
Labbe, L.      265 265(258)
LaDuca, A.      115(229)
Laigre, L.      4(28)
Laikos, J.K.      184 184(90)
Lamansky, S.      3(17)
Lampert, M.A.      55(161)
Landau-type free-energy expansion      234 236 244 262
Lane, P.A.      8(50) 19(90) 57(167)
Langdon, T.C.      275(7)
Langezaal, C.      121(9)
Laquindanum, J.G.      4(27)
Lareze, J.Z.      179(76)
Lattice dynamics, shape-memory alloys      181—187
Latyshev, Y.I.      157(75)
Laubender, J.      8(49)
Laudise, R.A.      57(168)
Lauge, T.      143(54)
Lawrence, B.      20(106)
Lazzaroni, R.      23(120) 23(121)
LeBrney, P.      4(22) 115(217)
Lee, H.W.H.      5(40)
Lee, J.Y.      9(59)
Leising, G.      7(46) 57(165—166) 115(219 224—225)
Leonard, W.      3(10)
Lewis's law, two-dimensional cellular structures      274—275
Lewis, F.T.      274 274(2—5) 275
Lhost, O.      19(104)
Li, F.      9(61)
Li, J.C.M.      304(92)
Li, W.      4(31) 115(229)
Li, Y.      49(148)
Li, Y.F.      26(129)
Libchaber, A.      293(64)
Lidzey, D.G.      36(134) 55(155—156)
Lieber, C.M.      123(19) 124(23) 125(36) 130(41) 153(66)
Lieber, Charles M.      119
Liess, M.      19(90) 57(167)
Lieth, R.M.A.      155(71)
Lifshitz, I.M.      280 280(20)
Light-emitting diodes (LEDs), organic      2—3
Light-emitting diodes (LEDs), organic, bipolar devices      93—98
Light-emitting diodes (LEDs), organic, device model      79—84
Light-emitting diodes (LEDs), organic, device structure      8—9
Light-emitting diodes (LEDs), organic, electronic transport properties      55—56
Light-emitting diodes (LEDs), organic, high current density operation      105—108
Light-emitting diodes (LEDs), organic, multilayer devices      98—105
Light-emitting diodes (LEDs), organic, Schottky energy barriers      24 31 32—45
Light-emitting diodes (LEDs), organic, single-carrier devices      84—93
Light-emitting diodes (LEDs), organic, transient response      105—108
Lim, A.K.L.      123(21) 124(26)
Lin, Y.-Y.      4(30—31) 5(37) 115(229)
Lindgard, P.-A.      168(27) 210(146) 244 244(209) 256(242) 263(253) 267
Lindgard, P.A.      196(112) 227(183) 258
Lindgard, P.A.-      168 231 235
Lissowski, A.      275 275(6)
Liu, J.      124(23) 148(62) 157
Localized soft-mode models, martensitic transition in shape-memory alloys      245—252
Logdlund, M.      3(13)
Lograsso, T.      193(110) 194 201(132) 202 204 207 208
Loram, J.      178(71)
Louat's model, grain growth in polycrystalline materials      282—283 306
Louat, N.P.      282 282(25) 306 313
Louie, S.G.      22(116) 145(57)
Lovey, F.C.      172(40) 191 197(119 121) 198 216 216(159)
Lovinger, A.J.      2(5) 4(25) 4(26)
Lu, J.G.      121(6)
Lu, X.      157(77)
Lucke, K.      280(19) 289(56) 305(93)
Luethi, B.      197(116)
Lupton, J.M.      80(195)
Lutwyche, M.      156(72)
Lutz, C.P.      125(32)
Lyding, J.W.      123(18) 124(25) 142(52)
Lyo, I.-W.      125(30 33)
Lyons, W.G.      123(18)
MacDiarmid, A.G.      105(206)
Mackay, K.      4(35)
Macqueron, F.J.L.      193(107)
Macqueron, J.L.      173(41—42 47—48) 232(191) 267
Mafiosa, LI.      168(31) 171 173(47—49) 174(50) 188 188(100) 191 192 193(107 109—110) 194 195 197(121) 198 199(125) 200 201(132) 202 204 207 208 210(149 151) 211 212(154—155) 214 216 216(159) 220 221(169 172) 222 229 231(185) 232(190) 237(204) 238 239 240 250 257(246) 258(247) 259 260(250 252)
Magee, C.L.      247(219)
Magnetic coupling, shape-memory alloys      253
Makhija, A.      4(27)
Makita, T.      212(153)
Malimanek, J.      171(35)
Malliaras, G.G.      24(123) 55(153 160)
Maniloff, E.      38(138)
Mantel, O.C.      121(9) 157(75)
Maosa, Lius      159
Marder, M.      285 285(31) 287 308
Marder, S.R.      3(16) 98(202)
Maree, C.H.M.      5(40)
Marioni, M.A.      256(239)
Mark, P.      55(161)
Markovic, N.      157(75)
Marks, R.N.      4(35) 3(13)
Martens, H.C.F.      55(159)
Martensites      162 168
martensitic transition of shape-memory alloys      210—216
Martensitic transition, shape-memory alloys      160 162—164 266—267
Martensitic transition, shape-memory alloys, experimental results      187—216
Martensitic transition, shape-memory alloys, Gmeisen parameters      186—187 210—216
Martensitic transition, shape-memory alloys, kinetics      172—174
Martensitic transition, shape-memory alloys, magnetic coupling      252—265
Martensitic transition, shape-memory alloys, modeling      233—252
Martensitic transition, shape-memory alloys, phase diagram      164—171
Martensitic transition, shape-memory alloys, phase stability      217—233
Martensitic transition, shape-memory alloys, phonon dispersion      199—210 256
Martensitic transition, shape-memory alloys, precursor effects      175—180 256
Martensitic transition, shape-memory alloys, second-order elastic constants      187—199
Martensitic transition, shape-memory alloys, thermodynamics      172—174 217—221
Martensitic transition, shape-memory alloys, third-order elastic constants      210—216
Martensitic transition, shape-memory alloys, vibrational anharmonicity      186—187 210—216
Martin, R.L.      15(76) 21(113) 49(146—147)
Martin, Richard      117
Martin, S.J.      8(50)
Martin, T.P.      143(54)
Martnez, B.      221(172) 222
Martynov, V.V.      205(141) 243 254(238)
Marzo, P.      248(220)
Mason, M.G.      9(60)
Massalski, T.B.      161(8)
Masse, M.A.      5(38)
Matsumoto, M.      264(256)
Matsumoto, S.      3(18)
Matters, M.      4(29)
Mattes, B.      38(138)
Mattheiss, L.F.      129(39)
Mau, A.W.H.      115(224—225)
Mazumdar, S.      19(89—91) 20(110—111)
McBranch, D.      8(52) 19(102) 38(138)
McBranch, Duncan      117
McCarthy, D.M.      55(154)
McEuen, P.L.      123(21) 124(26)
McGehee, M.D.      115(214)
McMillan, W.L.      136(44—45)
McMurry, S.      308(100)
McNairy, W.W.      123(16)
Mean field models, in polycrystalline materials      279—286 306
Meghdadi, F.      57(166)
MEH-PPV (poly[2-methoxy, 5-(2'-ethylhexyloxy)-1, 4-phenylene vinylene])      5
MEH-PPV (poly[2-methoxy, 5-(2'-ethylhexyloxy)-1, 4-phenylene vinylene]), carrier mobility      58—60 61 63—65 72—73
MEH-PPV (poly[2-methoxy, 5-(2'-ethylhexyloxy)-1, 4-phenylene vinylene]), exciton binding energy      45—46
MEH-PPV (poly[2-methoxy, 5-(2'-ethylhexyloxy)-1, 4-phenylene vinylene]), Schottky energy barrier      32—41 49 50
Meichle, M.E.      177(64—65)
Meier, F.      121(7)
Meijer, E.W.      4(24)
Mellor, H.      8(50)
Mermin, N.D.      126(37)
Metal/organic interface, Schottky barriers      24 31 32—45
Meth, J.      20(106)
Mhajan, S.      123(15)
Michaelson, H.B.      36(135)
Mikeley, W.      200(127)
Miller, E.K.      115(214)
Miller, J.      3(10)
Miller, T.M.      19(89) 98(200)
Mirza, K.      178(71)
Mittelbach, S.      197(116)
Miura, S.      171(34 36—37) 221(170)
Mizutani, U.      161(8)
Mocellin, A.      277(12—13)
Modeling, grain growth in polycrystalline materials      279—286 306—307
Modeling, martensitic transition in shape-memory alloys      233—252 262—264
Molho, P.      293(67)
Monceau, P.      157(75)
Monnereau, C.      312 312(107) 313 313(112—113)
Monte Carlo technique, grain growth in polycrystalline materials      286
Moon, R.      3(10)
Moore, B.G.      293(63)
Moore, E.      19(95 98)
Moore, E.E.      19(96—97)
Moran-Lopez, J.L.      231(186)
Moratti, S.C.      7(45) 9(63)
Mori, M.      193(111)
Mori, T.      171(36)
Morii, Y.      199 199(122) 204 205 205(138) 209(144)
Morin, M.      173(41—42 48) 197(119) 203(134) 212(155) 214 231(185) 232(190) 267
Morito, S.      253(232)
Morris, J.      227 227(182)
Morris, J.R.      210(147)
Morrison, S.R.      157(76)
Moses, D.      115(214)
Moshchalkov, V.V.      121(5)
Moss, S.C.      179(76)
Mouritsen, O.G.      196(112) 235 244 244(209)
Muelner, M.      197(116)
Mukamel, D.      286(33 35)
Mullen, K.      9(67) 84(196) 115(219 224)
Mullin, K.      19(104)
Mullins, W.W.      278 278(15) 297 298 299 301
Mullins-von Neumann law, grain growth in polycrystalline materials      283—286
Mullins-von Neumann law, two-dimensional cellular structures      277—279
Multilayer organic light-emitting diodes (LEDs)      98—105
Murakami, Y.      165 171(36) 197(120)
Murphy, D.W.      157(76)
Murray, J.L.      167
Murray, S.J.      255 256(239)
Muto, S.      178(73—74)
Mutsaers, C.M.J.      4(29)
Myron, H.W.      129(40)
Nagai      291
Nagai, T.      310(104)
Nagasawa, A.      189(103) 194 195 199 199(122) 204 204(136) 205 205(138) 210(150) 211 212(153) 231(189)
Nakai, K.      171(32)
Nakanishi, N.      171(36) 171(37) 195
Nakanishi, N.N.      189(103)
Nakazoto, K.      124(24)
Nanocrystals, Fermi surface nesting      143—148
Nanocrystals, formation by STM tip      132—142
Nanocrystals, formation in 2H-TaS2      151—152
Nanocrystals, formation in H-layer of 4Hb-TaSe2      148—151
Nanocrystals, formation to other TMD systems      148—155
Nanocrystals, size-dependent effect      142—143
Nanostructures, fabrication      124—125
Nash, P.      167
Neef, C.J.      54(150) 55(163) 106(211)
Neef, Charles      117
Neher, D.      7(44)
Nelson, S.F.      4(30) 5(37)
Nemchuk, N.      157(77)
Nenno, S.      205(141)
Nessakh, B.      10(70)
Neutral bipolaron      19
Neutron scattering, as martensitic transition precursor effect      175—176 256
Newmann, K.-U.      265(259)
News, D.M.      142(50)
Ni-Al alloy, martensitic transition      167 176—179 201 251
Ni2MnGa, properties      254—256
Nielsen, M.M.      4(24)
Nikitenko, V.I.      105(209) 105(210)
Nishio, Y.      47(144)
Nishizawa, T.      306(96)
Noda, Y.      176 176(61) 177(66) 178 179(76) 180(84) 204 244(210) 245(211) 202
Nordberg, J.      296(74 76)
Novak, V.      171(35)
Novikov, S.V.      68(178)
Novikov, V.Y.      289(57)
Nucleation, martensitic transition in shape-memory alloys      245—251
Nuesch, F.      49(148—149)
Nye, J.F.      181(88)
O'Handley, R.C.      253(234) 255 256(239)
Obrado, E.      168(31) 219 220 232(190) 257(246) 258(247) 259 260(250 252) 267
OBrien, D.F.      3(19—20) 56(164)
Ogawa, H.      312(108)
Ohba, T.      201(133) 202 203(135) 244(208)
Ohnuma, I.      306(96)
Ohta, S.      310(104)
Olin, H.      149(63) 156(74)
Olson, G.B.      162(10) 247(218)
Organic electronic devices      1—4 8—12 113—115
Organic electronic devices, electrical transport properties      54—77
Organic electronic devices, field-effect transistors (FETs)      2—4 9—12 77—79 108—112
Organic electronic devices, light-emitting diodes (LEDs)      2—3 8—11 77—108
Organic electronic devices, materials      4—8 12—24
Organic electronic devices, metal/organic interface electronic structure      24—54
Organic electronic materials      4—8 12—24
Organic electronic materials, carrier mobilities in      56—77
Organic electronic materials, electrical transport properties      54—77
Organic electronic materials, electron-ion and electron-electron interactions      16—21
Organic electronic materials, electronic structure      13—16
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå