Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Olver F.W.J. — Asymptotics and Special Functions
Olver F.W.J. — Asymptotics and Special Functions



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Asymptotics and Special Functions

Àâòîð: Olver F.W.J.

Àííîòàöèÿ:

A classic reference, intended for graduate students, mathematicians, physicists, and engineers, this book can be used both as the basis for instructional courses and as a reference tool.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Àíàëèç/Àñèìïòîòè÷åñêèå ìåòîäû, Òåîðèÿ âîçìóùåíèé/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1974

Êîëè÷åñòâî ñòðàíèö: 572

Äîáàâëåíà â êàòàëîã: 26.03.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Exponential integral, asymptotic expansion of      1—3 112 227
Exponential integral, complementary      40
Exponential integral, converging factors for      523—531 543—544
Exponential integral, generalized      43 72 112 527
Exponential integral, relation to incomplete Gamma functions      45
Fabry’s transformation      231
Faxen, H.      332
Faxen’s integral      332
Fedoryuk, M. V.      105 361 479 517 518 N.
Ferrers functions      185—189 (see also “Legendre functions Legendre
Ferrers functions of large degree      467—469 472—473
Ferrers functions, zeros      469
Feshbach, H.      501
Fields, J. L.      321
Fix, G.      228
Ford, W. B.      321
Fourier integrals      75
Fourier integrals, asymptotic expansion of      75—79
Frank, W. M.      479
Franklin, J.      68 544
Fresnel integrals      44 60
Fresnel integrals, asymptotic expansion of      67
Friedman, B.      351 361 544
Frobenius, G.      149 152
Frobenius’ method      152 163 243
Froese, C      317 320
Froman, N.      517 518
Froman, P. O.      517 518
Fubini, S.      479
Fuchs, L.      145
Functions defined parametrically by integrals      31—32
Furlan, G.      479
Furry, W. H.      517
Gamma function      31 (see also “Incomplete Gamma Psi
Gamma function, asymptotic expansion of      87—88 129—130 293—295
Gamma function, asymptotic expansion of ratio      118—119
Gamma function, Binet’s formula      295
Gamma function, canonical product      34
Gamma function, duplication formula      35
Gamma function, Euler’s integrals      31
Gamma function, expansion at z = 1      64
Gamma function, Gamma function, Euler’s limit formula      33
Gamma function, Hankel’s loop integral      38
Gamma function, history      64
Gamma function, minimum of      39
Gamma function, multiplication formula      35 295
Gamma function, Pochhammer’s loop integral      38
Gamma function, recurrence formula      32
Gamma function, reflection formula      35
Gamma function, singularities      32
Gans — Jeffreys formulas      493—494 510—513
Gans, R.      228 516
Gauss, C. F.      161
Geller, M.      64
Generating function      51
Goodwin — Staton integral      44 115 543
Goodwin, E. T.      44
Green, G.      228
Haar, A.      316 317 318
Haar’s method      315—320 321
Handelsman, R. A.      104 105 332 361
Hankel functions      238
Hankel functions of half-odd-integer order      241
Hankel functions of large argument      238 240 266—270
Hankel functions of large order      424 434
Hankel functions, analytic continuation      239
Hankel functions, bounds for      270
Hankel functions, Hankel’s integrals      241
Hankel functions, recurrence relations      241
Hankel functions, relation to Bessel functions      239 242
Hankel functions, Sommerfeld’s integrals      241
Hankel functions, Wronskians      241
Hankel functions, zeros      434
Hankel, H.      37 133
Hankel’s expansions      238
Hankel’s expansions, error bounds for      266—269
Hanson, R. J.      433
Hardy, G. H.      321
Harris, B.      329
Hartman, P.      143 189
Heading, J.      517
Hermite polynomials      48—50 52
Hermite polynomials of large degree      315 403 412
Hermite polynomials, relation to confluent hypergeometric functions      259
Hermite polynomials, zeros      408
Herstein, I. N.      336
Hethcote, H. W.      228 278 433 434
Hobson, E. W.      184 189
Hochstadt, H.      65
Holomorphic function      9
Horn, J.      277 391
Hsieh, P.-F.      277
Hsu, L. C      361
Hukuhara, M.      391
Hull, T. E.      317 320
Hypergeometric equation      156
Hypergeometric equation, connection formulas for solutions      164—167
Hypergeometric equation, generalized      168
Hypergeometric equation, second solution when c is a nonpositive integer      168
Hypergeometric function      159 (see also “Hypergeometric equation”)
Hypergeometric function as function of its parameters      160
Hypergeometric function of large argument      167 302
Hypergeometric function, asymptotic expansions for large parameters      162
Hypergeometric function, Barnes’ integral      301 321
Hypergeometric function, behavior at z= 1      161 165—166
Hypergeometric function, contiguous      162 177
Hypergeometric function, derivatives      162
Hypergeometric function, generalized      168 189 309
Hypergeometric function, history      189
Hypergeometric function, integral representations      161 162 301
Hypergeometric function, Pochhammer’s loop integral      162
Hypergeometric function, quadratic transformation      167
Hypergeometric function, relation to elementary functions      160 161
Hypergeometric function, singularities      159
Hypergeometric series      159
Improper integrals      74 104
Ince, E. L.      189 231
Incomplete gamma functions      45 64 100
Incomplete Gamma functions, asymptotic expansion of      66—67 69—70 109—112 137
Incomplete Gamma functions, bounds for      67 70 135
Incomplete Gamma functions, complementary      45
Incomplete Gamma functions, relation to confluent hypergeometric functions      259
Integral equations      217—220 228
Integration of series, asymptotic      20—21
Integration of series, convergent      54
Inverse Laplace transforms      315—316
Inverse Laplace transforms, asymptotic expansions of      316—317
Irregular singularities      148 (see also “Singularities of differential equations”)
Irregular singularities at infinity      154
Irregular singularities of inhomogeneous equation      270—274
Irregular singularities, asymptotic solutions at      197—202 223—224 232—236
Irregular singularities, characteristic equation      231
Irregular singularities, characteristic values      231
Irregular singularities, circuit exponents      482
Irregular singularities, circuit roots      482
Irregular singularities, connection formulas at      481—482
Irregular singularities, error bounds for asymptotic solutions      193 196 222 265—266 278
Irregular singularities, formal solutions at      230 231
Irregular singularities, history      277—278
Irregular singularities, LG approximation at      230
Irregular singularities, rank      148 154
Ismail, M. E.      321
Jacobi polynomials      48—49 52 167
Jacobi’s lemma      185
Jeffreys, B. S.      192
Jeffreys, H.      192 206 228 433 495 501 516 517 544
Join      15
Jones, A. L.      251
Jones, D. S.      105 136 361
Jordan’s inequality      42
Jorna, S.      433 434
Karmazina, L. N.      479
Kazarinoff, N. D.      278 479
Kelvin (Lord)      105
Kelvin functions      61
Kelvin’s method of stationary phase      see “Method of stationary phase”
Kemble, E. C      497 517
Kiyek, K. H.      391 433
Klein, F.      159
Knopp, K.      283
Kostomarov, D. P.      478
Kramers, H. A.      228
Kronecker’s delta symbol      46
Kummer’s function      255 (see also “Confluent hypergeometric functions”)
Laguerre polynomials      48—50 52
Laguerre polynomials, relation to confluent hypergeometric functions      259
Landau, E.      4
Langer, R. E.      228 433 478 479 517
Laplace (Le Marquis de)      80
Laplace integrals      67
Laplace integrals, analytic continuation      107—108
Laplace integrals, asymptotic expansion of      67—70 106—109
Laplace transform      112
Laplace transform, abscissas of convergence      113
Laplace transform, inversion of      315—316
Laplace’s method      80—81 85—86
Laplace’s method for contour integrals      121—127
Laplace’s method, error bounds for      90—96 105 135—136
Laplace’s method, examples      82—84 87—88 127—130
Laplace’s method, generalizations      325—329 331—333 336—339 361
Laplace’s method, history      105
Laplace’s method, relation to method of stationary phase      98
Laurent coefficients, asymptotic expansion of      309—310 321
Lauwerier, H. A.      130
Legendre functions      170 178 Conical Ferrers Legendre
Legendre functions of degree or order ±i      173—174
Legendre functions of integer degree      179 180—185
Legendre functions of large degree      206 311—313 463—473 479
Legendre functions on cut      185
Legendre functions, addition theorem      183
Legendre functions, analytic continuation      179
Legendre functions, behavior at singularities      171 173—174 181
Legendre functions, bound for      185
Legendre functions, connection formulas      171 179 490—491
Legendre functions, degree      174
Legendre functions, generating function      185
Legendre functions, Heine’s formula      473
Legendre functions, Heine’s integral      185
Legendre functions, history      189 479
Legendre functions, integral representations      174 177—183 185 189
Legendre functions, Neumann’s integral      183
Legendre functions, order      174
Legendre functions, recurrence relations      176—177 179
Legendre functions, Whipple’s formula      174
Legendre functions, Wronskians      172
Legendre polynomials      48 (see also “Ferrers functions Legendre
Legendre polynomials of large degree      84 127—129 130 311—313 463—473 479
Legendre polynomials, bound for      52
Legendre polynomials, differential equation for      50
Legendre polynomials, generating function      51
Legendre polynomials, Laplace’s integral      52
Legendre polynomials, Neumann’s expansion theorem      473
Legendre polynomials, recurrence relations      50 52
Legendre polynomials, Rodrigues’ formula      49
Legendre polynomials, Schlafli’s integral      51
Legendre polynomials, zeros      469
Legendre, A. M.      291
Legendre’s equation      169
Lerch, M.      299
Levinson, N.      31 123 128 146 247 479
Lew, J. S.      104 332 361
LG approximation      191
LG approximation at singularities      200—202 204—206 208
LG approximation with complex variables      222
LG approximation, asymptotic properties with respect to independent variable      197—202 223—224
LG approximation, asymptotic properties with respect to parameters      203—206 224
LG approximation, condition for exactness      193
LG approximation, derivative of error term with respect to parameter      216
LG approximation, error bounds for      193 196 203—204 206 222
LG approximation, history      228
LG approximation, special extension      208—211
LG functions      191
Lindelof, E.      294 321
Liouville transformation      191 228 363
Liouville — Green      see “LG approximation LG
Liouville — Neumann expansion      146 218 364
Liouville, J.      228
Logarithmic integral      41 64
Lommel, E. C. J. von      245
Lommel’s method for locating zeros      245 414
Loop contour      37
Lorch, L.      434
Ludwig, D.      342
Luke, Y. L.      64 162 189 278 321 344 434
Lyness.J. N.      104 306 321
Macdonald, H. M.      252
Macdonald’s function      250 (see also “Modified Bessel functions”)
MacFarlane, G. G.      321 544
Maclaurin coefficients, asymptotic expansion of      309—315 329—331
MacRobert, T. M.      189
Massey, H. S. W.      433
Mathieu equation      496
Maximon, L.      78
McHugh, J. A. M.      228 433 517
McKenna, J.      361
McLeod, J. B.      479 518
Medhurst, R. G.      94
Mellin transform      336
Method of Chester, Friedman, and Ursell      351 361
Method of Chester, Friedman, and Ursell, examples      352—357 425
Method of Chester, Friedman, and Ursell, extension of the region of validity      358
Method of stationary phase      96 100—102 104
Method of stationary phase, examples      102—104
Method of stationary phase, generalizations      342 361
Method of stationary phase, history      105
Method of stationary phase, relation to other methods      98 105 138
Method of steepest descents      136—138 (see also “Laplace’s method”)
Method of successive approximations      141
Miller, G. F.      346 527
Miller, J. C. P.      154 228 433 524 530 540 543
Milne — Thomson, L. M.      321
Modified Bessel equation      60
Modified Bessel equation, inhomogeneous form      386
Modified Bessel equation, numerically satisfactory solutions      251
Modified Bessel functions      60 250
Modified Bessel functions of large argument      82—83 92—94 250 251 269
Modified Bessel functions of large complex order      381—382
Modified Bessel functions of large imaginary order      382 425
Modified Bessel functions of large positive order      328 374—381
Modified Bessel functions, analytic continuation      253 381
Modified Bessel functions, ascending series      60 253
Modified Bessel functions, asymptotic expansion of v-derivatives      325
Modified Bessel functions, auxiliary functions for      454—457
Modified Bessel functions, Bassett’s integral      254
Modified Bessel functions, collected properties      435—436 453—454
Modified Bessel functions, converging factor for      536
Modified Bessel functions, generating function      61
Modified Bessel functions, graphs      251
Modified Bessel functions, infinite integral of      254
Modified Bessel functions, integral representations      60 250 254
Modified Bessel functions, monotonicity properties      251
Modified Bessel functions, recurrence relations      60 253
Modified Bessel functions, relation to confluent hypergeometric functions      255 259
Modified Bessel functions, Wronskians      251
Modified Bessel functions, zeros      252 254
Modulus function      394 436 456
Moments      70
Monodromy theorem      146
Monotonicily condition      222
Monotonicily condition, necessity of      236
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå