Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Sharma S. — Applied Multivariate Techniques
Sharma S. — Applied Multivariate Techniques



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Applied Multivariate Techniques

Àâòîð: Sharma S.

Àííîòàöèÿ:

This book focuses on when to use the various analytic techniques and how to interpret the resulting output from the most widely used statistical packages (e.g., SAS, SPSS).


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1995

Êîëè÷åñòâî ñòðàíèö: 512

Äîáàâëåíà â êàòàëîã: 20.11.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$\chi^{2}$ critical points, table of      459
$\chi^{2}$ statistic, null hypothesis testing      157 162
Adjusted goodness-of-fit index, LISREL      159
Akaike's information criteria      324
Alpha factor analysis      109
Analysis of variance (ANOVA) with one dependent/more than one independent variable      7
Analysis of variance (ANOVA), monotonic analysis of variance (MONANOVA)      8—9
Analysis of variance (ANOVA), multivariate analysis of variance (MANOVA)      10
Analysis of variance (ANOVA), situations for use      7
anova      see "Analysis of variance (ANOVA)"
Association coefficients, in cluster analysis      220
Assumptions, equality of covariance matrices assumption      383—386
Assumptions, independence assumption      387—388
Assumptions, normality assumptions      375
Average-linkage method, hierarchical clustering method      192—193
Axes, in Cartesian coordinate system      17—19
Backward selection, stepwise discriminant analysis      265
Bartlett's test      76
Bartlett's test, purpose of      123
Bartlett's test, sensitivity of      123
Basis vectors      25 31
Bayesian theory, objective of      256
Bayesian theory, posterior possibilities based on      281
Bernoulli trial      340
Between-group analysis      41—42
Between-group analysis, sum of squares and cross products matrix      42
BIOMED, clustering routines      220
BIOMED, structural model estimation      426
Bootstrap method, discriminant function validation      274
Box' M in multiple-group MANOVA      351 356
Box' M, checking equality of covariance matrices      384—386
Canonical correlation as general technique      409
Canonical correlation with more than one dependent/one or more independent variables      9
Canonical correlation, analytic approach to      397—398
Canonical correlation, canonical variates      401—402 404
Canonical correlation, change in scale, effect of      415
Canonical correlation, computer analysis      398—406
Canonical correlation, examples of use      406—409 412—418
Canonical correlation, external validity of      409
Canonical correlation, geometric view of      391—397
Canonical correlation, practical significance of      404—406
Canonical correlation, situations for use      9 391
Canonical correlation, statistical significance tests for      402—404
Canonical discriminant function      251
Canonical discriminant function, standardized      253—254
Cartesian coordinate system      17—19
Cartesian coordinate system, change in origin and axes      18—19
Cartesian coordinate system, Euclidian distance      19
Cartesian coordinate system, origin and axes in      17—19
Cartesian coordinate system, rectangular Cartesian axes      17
Cartesian coordinate system, representation of points      17—18
Cartesian coordinate system, vectors in      23—25
Central tendency measures, mean      36
Centroid method, hierarchical clustering method      188—191
Chaining effect, in hierarchical clustering methods      211 217
Chi-square difference test      439
Chi-square goodness of fit test      378
Chi-square plot      381—382
Chi-square plot, computer program for      389—390
Classification as independent procedure      242 244
Classification for more than two groups      311—312
Classification in discriminant analysis      242—244 278—284
Classification in logistic regression      326—327
Classification, classification function method      257—258
Classification, classification matrix      255—256
Classification, classification rate, evaluation of      258—260
Classification, computer analysis      256—257 261
Classification, cutoff-value method      255—256
Classification, Mahalanobis distance method      258
Classification, misclassification errors      256—257 261 311—312
Classification, multiple-group discriminant analysis      293 303—304 311—312 313
Classification, multivariate normal distributions, rules for      281—283
Classification, practical significance of      260
Classification, statistical decision theory      256—257 279—281
Classification, statistical tests used      258 260
Classification, total probability of misclassification      280
Cluster analysis, average-linkage method      192—193
Cluster analysis, centroid method      188—191
Cluster analysis, comparison of hierarchical/nonhierarchical methods      211—217
Cluster analysis, complete-linkage or farthest-neighbor method      192
Cluster analysis, computer analysis of      193—202
Cluster analysis, dendrogram in      190—191
Cluster analysis, examples of      221—232
Cluster analysis, external validity of solution      221
Cluster analysis, geometrical view of      186—187
Cluster analysis, hierarchical clustering methods      188—193
Cluster analysis, loss of homogeneity in      200
Cluster analysis, nonhierarchical clustering      202—211
Cluster analysis, objective of      187
Cluster analysis, Q-factor analysis      187
Cluster analysis, R-squared      198 200
Cluster analysis, reliability of solution      221
Cluster analysis, root-mean-square total-sample standard deviation      197 198
Cluster analysis, semipartial R-squared      198 200
Cluster analysis, similarity measures      187—188 218—220
Cluster analysis, single-linkage or nearest-neighbor method      191
Cluster analysis, situations for use      12 185
Cluster analysis, Ward's method      193
Common factors      96 108
Communality      92
Communality estimation problem, and factor analysis      136
Complete-linkage method, hierarchical clustering method      192 217
Computer programs      see "BIOMED" "Statistical "Statistical
Concordant pair      325 326
Confirmatory factor analysis      128
Confirmatory factor analysis, LISREL      148—177
Confirmatory factor analysis, objectives of      148
Confirmatory factor analysis, situations for use      144
Confusion matrix      255—256
Conjoint analysis with one dependent/more than one independent variable      8—9
Conjoint analysis, monotonic analysis of variance (MONANOVA)      8—9
Constrained analysis, LISREL      171 173
Contingency table analysis, in logistic regression      327—328
Contrasts, computer analysis      360—366
Contrasts, correlated contrasts      363—366
Contrasts, Helmert contrasts      360—361
Contrasts, multivariate significance tests for      359—360 363
Contrasts, orthogonal contrasts      357—363
Contrasts, univariate significance tests for      357—359 360 362—363
Correlated contrasts, in multiple-group MANOVA      363—366
Correlation coefficient for standardized data      39
Correlation coefficient in cluster analysis      220
Correlation matrix in confirmatory factor analysis      144—145
Correlation matrix, use in      144—145
Correspondence analysis, situations for use      12
Covariance matrix and factor analysis      144—145
Covariance matrix, equality of covariance matrices assumption      383—387
Covariance matrix, one-factor model with      145—147
Cutoff-value method      244 255—256
Data analytic methods, dependence methods      4—10
Data analytic methods, interdependence methods      4 10—12
Data analytic methods, structural models      13—14
Data manipulations, computer procedures for      55—57
Data manipulations, degrees of freedom      36—38
Data manipulations, generalized variance      39
Data manipulations, group analysis      40—42
Data manipulations, mean      36
Data manipulations, mean-corrected data      36
Data manipulations, standardization of data      39
Data manipulations, sum of cross products      39
Data manipulations, sum of squares      38—39
Data manipulations, variance      38
Degrees of freedom      36—38
Degrees of freedom, computation of      37—38
Dendrogram, for clustering process      190—191
Dependence methods      4—10
Dependence methods for more than one dependent/more than one independent variables      9—10
Dependence methods for one dependent/more than one independent variable      5—9
Dependence methods for one dependent/one independent variable      5 6
Dependence methods, analysis of variance      7
Dependence methods, canonical correlation      9
Dependence methods, conjoint analysis      8—9
Dependence methods, discrete discriminant analysis      8
Dependence methods, discrete multiple-group discriminant analysis      10
Dependence methods, discriminant analysis      7—8
Dependence methods, logistic regression      8
Dependence methods, multiple-group discriminant analysis      10
Dependence methods, multivariate analysis of variance      10
Dependence methods, regression      5
Dependence methods, situations for use of      4
Detrended normal plot      378—379
Dimensional reduction, principal components analysis as      64—65
Direction cosines      25
Discordant pair      325
Discrete discriminant analysis, with one dependent/more than one independent variable      8
Discrete multiple-group discriminant analysis with more than one dependent/one or more independent variables      10
Discrete multiple-group discriminant analysis, situations for use      10
Discriminant analysis      see also "Multiple-group discriminant analysis" "Two-group
Discriminant analysis with one dependent/more than one independent variable      7—8
Discriminant analysis, compared to multivariate analysis of variance (MANOVA)      350
Discriminant analysis, compared with logistic regression      332—333
Discriminant analysis, discrete discriminant analysis      8
Discriminant analysis, discrete multiple-group discriminant analysis      10
Discriminant analysis, multiple-group discriminant analysis      10
Discriminant analysis, situations for use      8 237
Discriminant analysis, stepwise discriminant analysis      246 264—273
Discriminant function, multiple-group discriminant analysis      294—303
Discriminant function, multiple-group discriminant analysis, assessment of importance of      303
Discriminant function, multiple-group discriminant analysis, computation options      294 297
Discriminant function, multiple-group discriminant analysis, estimate of      297—299
Discriminant function, multiple-group discriminant analysis, group differences, examination of      307
Discriminant function, multiple-group discriminant analysis, labeling of      307
Discriminant function, multiple-group discriminant analysis, number needed      299—303
Discriminant function, multiple-group discriminant analysis, practical significance of      302—303
Discriminant function, multiple-group discriminant analysis, statistical significance of      299—302
Discriminant function, two-group discriminant analysis      250—254
Discriminant function, two-group discriminant analysis, bootstrap method for validation of      274
Discriminant function, two-group discriminant analysis, canonical discriminant function      251
Discriminant function, two-group discriminant analysis, computation options      250—251
Discriminant function, two-group discriminant analysis, estimate of      251—252
Discriminant function, two-group discriminant analysis, holdout method for validation of      273
Discriminant function, two-group discriminant analysis, linear discriminant function      242
Discriminant function, two-group discriminant analysis, meaning of      242
Discriminant function, two-group discriminant analysis, practical significance of      253
Discriminant function, two-group discriminant analysis, standardized canonical discriminant function      253—254
Discriminant function, two-group discriminant analysis, statistical significance of      252—253
Discriminant function, two-group discriminant analysis, U-method for validation of      273—274
Discriminant score, meaning of      242
Discriminant variables      238
Discriminant variables, assessment of importance of      253—254
Distance measures      218—220
Distance measures, Euclidian distance      19 219
Distance measures, Mahalanobis distance      44—45 220
Distance measures, Minkowski distance      218
Distance measures, statistical distance      42—44
Distinguishability of observations      45
Effect size in MANOVA      348—349
Effect size, multivariate      349
Effect size, univariate      349
Eigenstructure of covariance matrix      84—85
Eigenstructure of covariance matrix, computer analysis      87—89
Equality of covariance matrices assumption      383—387
Equality of covariance matrices assumption, errors and violation of      383—384
Equality of covariance matrices assumption, tests for checking equality      384—387
Equivalent vectors      20
Error sums of squares      193
Euclidian distance      19
Euclidian distance and statistical distance      43—44
Euclidian distance for standardized data      219
Euclidian distance in cluster analysis      219
Euclidian distance in similarity matrix      187—188
Event      325
Exploratory factor analysis      128
Exploratory factor analysis, situations for use      144
F-distribution in multiple-group discriminant analysis      294
F-distribution, table of      460—465
F-ratio in multiple-group discriminant analysis      294 301
F-ratio in multiple-group MANOVA      351
F-ratio in stepwise discriminant analysis      266 271
F-ratio, relationship to Wilks' A      348
F-test, in multiple-group discriminant analysis      293 294
Factor analysis      see also "Confirmatory factor analysis"
Factor analysis and communality estimation problem      136
Factor analysis, alpha factor analysis      109
Factor analysis, appropriateness of data for      116 123 125
Factor analysis, choosing technique for      108
Factor analysis, common factors      96 108
Factor analysis, communalities problem, estimation of      100
Factor analysis, compared to principal components analysis      125—128
Factor analysis, computer estimation of      109—115
Factor analysis, concepts/terms related to      90—93
Factor analysis, confirmatory factor analysis      128
Factor analysis, exploratory factor analysis      128
Factor analysis, factor extraction methods      141—142
Factor analysis, factor indeterminacy      97—98 136
Factor analysis, factor rotation problem      97 100—102 136
Factor analysis, factor rotations, types of      137—141
Factor analysis, factor scores      96 142—143
Factor analysis, factor solution      117—118
Factor analysis, fundamental factor analysis equation      136
Factor analysis, geometric view of      99—102
Factor analysis, image analysis      109
Factor analysis, interpretation of factor structure      125
Factor analysis, model with more than two factors      96 102 135—136
Factor analysis, number of factors needed      116—117
Factor analysis, objectives of      99
Factor analysis, one-factor model      93 132—133
Factor analysis, principal axis factoring (PAF)      107 142
Factor analysis, principal components factoring (PCF)      103—107 141—142
Factor analysis, representation of factors      118—119
Factor analysis, situations for use      11 90
Factor analysis, two-factor model      93—96 133—135
Factor extraction methods      141—142
Factor extraction methods, principal axis factoring      142
Factor extraction methods, principal components factoring      141—142
Factor rotation problem      97 100—102 136
Factor rotation problem, basis of      97
Factor rotation problem, geometric view of      100—102
Factor rotations      137—141
Factor rotations, oblique rotation      140—141
Factor rotations, orthogonal rotation      137
Factor rotations, quartimax rotation      120—121 137
Factor rotations, varimax rotation      119—120 138 139—140
Factor scores      96 142—143
Farthest-neighbor method, hierarchical clustering method      192 217
Fisher's linear discriminant function      245 277—278
Fisher's linear discriminant function, computation of      277—278
Fisher's Z transformation      383
Forward selection, stepwise discriminant analysis      265
Fundamental factor analysis equation      136
Generalized variance      39 50—51
Generalized variance, equality to determinant of covariance matrix      54—55
Generalized variance, geometric representation of      50—51
Geometric concepts, Cartesian coordinate system      17—19
Geometric concepts, vectors      19—33
Goodness-of-fit measures in logical regression      324
Goodness-of-fit measures, chi-square      378
Goodness-of-fit measures, LISREL      157—159
Gram — Schmidt orthonormalization procedure      32
group analysis      40—42
Group analysis, between-group analysis      41—42
Group analysis, within-group analysis      40—41
Helmert contrasts      360—361
Heuristic measures, of model fit      157—160
Hierarchical clustering methods      188—193
Hierarchical clustering methods, average-linkage method      192—193
Hierarchical clustering methods, centroid method      188—191
Hierarchical clustering methods, chaining effect in      211 217
Hierarchical clustering methods, complete-linkage or farthest-neighbor method      192
Hierarchical clustering methods, computer analysis      193—202
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå