| Hierarchical clustering methods, evaluation of      211—217 Hierarchical clustering methods, example of      221—228
 Hierarchical clustering methods, single-linkage or nearest-neighbor method      191
 Hierarchical clustering methods, Ward's method      193
 Holdout method, discriminant function validation      273
 Image analysis      109
 Implied covariance matrix      444—449
 Implied covariance matrix, matrix algebra      445—446
 Implied covariance matrix, models with observable constructs      444—446
 Implied covariance matrix, models with unobservable constructs      446—449
 Independence assumption      387—388
 Independence assumption, lack of tests for      388
 Indicator      91
 Interdependence methods      4 10—12
 Interdependence methods, cluster analysis      12
 Interdependence methods, correspondence analysis      12
 Interdependence methods, factor analysis      11
 Interdependence methods, loglinear models      12
 Interdependence methods, principal components analysis      11
 Interdependence methods, situations for use of      4 10
 Interval scale, use of      2—3
 K-means clustering      205
 Kaiser — Meyer — Olkin measure      116
 Kolmogorov — Smimov test      378 379
 Kurtosis and leptokurtic distribution      375
 Kurtosis of univariate normal distribution      375
 Kurtosis, normalization of      375
 Latent constructs and structural models      13 14
 Latent constructs, meaning of      13
 Latent factor      91
 Leptokurtic distributions, nature of      375
 Linear combination, vectors      26—27
 Linear discriminant function      242
 Linear discriminant function, Fisher's      245 277—278
 LISREL      148—177
 LISREL, adjusted goodness-of-fit index      159
 LISREL, commands      150—152
 LISREL, constrained analysis      171 173
 LISREL, estimated model parameters, evaluation of      162—164
 LISREL, example of use      174—178
 LISREL, goodness-of-fit indices      157—159
 LISREL, initial estimates      152—157
 LISREL, maximum likelihood estimates      422—424
 LISREL, McDonald's transformation of the noncentrality parameter (MDN)      159—160
 LISREL, model fit, evaluation of      157—162
 LISREL, model information and parameter specifications      152
 LISREL, model respecification      164—165
 LISREL, modification indices      164
 LISREL, multigroup analysis      170—173
 LISREL, null hypothesis test      157
 LISREL, null model      160 161
 LISREL, one-factor model      153—156
 LISREL, parameter estimates      162—163
 LISREL, relative goodness-of-fit index      159
 LISREL, relative noncentrality index      160
 LISREL, rescaled noncentrality parameter      159 160
 LISREL, residual matrix      160—162
 LISREL, root mean square residual      159
 LISREL, squared multiple correlation      163—164
 LISREL, structural model in      421—434
 LISREL, terminology related to      148—149
 LISREL, total coefficient of determination      164
 LISREL, Tucker — Lewis index      160
 LISREL, two-factor model      165—170
 LISREL, unconstrained analysis      171
 Loadings      404
 Logistic regression with combination categorical/continuous independent variables      328—332
 Logistic regression with one categorical variable      321—327
 Logistic regression with one dependent/more than one independent variable      8
 Logistic regression, classification      326—327
 Logistic regression, compared with discriminant analysis      332—333
 Logistic regression, computer analysis      321—335
 Logistic regression, contingency table analysis      327—328
 Logistic regression, example as illustration of      333—335
 Logistic regression, example of use      333—335
 Logistic regression, logistic regression model      319—321
 Logistic regression, maximum likelihood estimation procedure in      321 324—325 339—341
 Logistic regression, model fit, assessment of      323—324
 Logistic regression, model information      321
 Logistic regression, multiple logistic regression      320
 Logistic regression, parameter estimates      324—325
 Logistic regression, predicted probabilities, association of      325—326
 Logistic regression, probability and odds in      317—321
 Logistic regression, situations for use      8 317
 Logistic regression, stepwise selection procedure      329 331—332
 Logit function      320
 Logit transformation      383
 Loglinear models, situations for use      12
 Loss of homogeneity, in cluster analysis      200
 Mahalanobis distance      44—45
 Mahalanobis distance as classification method      258
 Mahalanobis distance in cluster analysis      220
 Mahalanobis distance in MANOVA      343
 Mahalanobis distance, definition of      44
 Mahalanobis distance, formula for      44
 Mahalanobis distance, squared distance in stepwise discriminant analysis      266
 Manova      see "Multivariate analysis of variance (MANOVA)"
 Maximum likelihood estimation technique in LISREL      422—424
 Maximum likelihood estimation technique in logistic regression      321 324—325 339—341
 Maximum likelihood estimation technique, computation of      181—185
 Maximum likelihood estimation technique, computer analysis      148—173
 McDonald's transformation of the noncentrality parameter (MDN)      159—160
 Mean, computation of      36
 Mean-corrected data, nature of      36
 Measure of I      91
 Measurement model      14
 Measurement scales and number of variables      3—4
 Measurement scales, interval scale      2—3
 Measurement scales, nominal scale      2
 Measurement scales, ordinal scale      2
 Measurement scales, ratio scale      3
 Minimum average partial correlation (MAP)      117
 Minkowski distance      218
 Modification indices, LISREL      164
 Monotonic analysis of variance (MONANOVA), situations for use      8—9
 Multicollinearity and stepwise discriminant analysis      272—273
 Multicollinearity, population-based      273
 Multicollinearity, sample-based      273
 Multigroup analysis, with LISREL      170—173
 Multiple regression as canonical correlation      9
 Multiple regression with one dependent/more than one independent variable      5—9
 Multiple regression, discriminant analysis      262—263
 Multiple-group discriminant analysis with more than one dependent/one or more independent variables      10
 Multiple-group discriminant analysis, analytical approach to      293—294
 Multiple-group discriminant analysis, classification      293 303—304 311—312 313
 Multiple-group discriminant analysis, computer analysis      294—307
 Multiple-group discriminant analysis, discrete multiple-group discriminant analysis      10
 Multiple-group discriminant analysis, discriminant function      294—303
 Multiple-group discriminant analysis, F-test in      293 294
 Multiple-group discriminant analysis, geometric view of      287—293
 Multiple-group discriminant analysis, multivariate normal distribution      312—316
 Multiple-group discriminant analysis, new axes, identification of      289 293
 Multiple-group discriminant analysis, number of discriminant functions needed      288—289
 Multiple-group discriminant analysis, significance of variables, estimation of      294
 Multiple-group discriminant analysis, situations for use      10
 Multiple-group MANOVA      355—366
 Multiple-group MANOVA, computer analysis      355—366
 Multiple-group MANOVA, correlated contrasts      363—366
 Multiple-group MANOVA, multivariate effects      356
 Multiple-group MANOVA, orthogonal contrasts      356—363
 Multiple-group MANOVA, univariate effects      356
 Multivariate analysis of variance (Manova)      see also "Multiple-group MANOVA" "Two-group
 Multivariate analysis of variance (MANOVA) and multivariate effect size      349—350
 Multivariate analysis of variance (MANOVA) and univariate effect size      349
 Multivariate analysis of variance (MANOVA) with more than one dependent/one or more independent variables      10
 Multivariate analysis of variance (MANOVA) with one independent/one dependent variable      343
 Multivariate analysis of variance (MANOVA) with one independent/p dependent variables      344—346
 Multivariate analysis of variance (MANOVA) with one independent/two or more dependent variables      343—344
 Multivariate analysis of variance (MANOVA) with two independent variables      366—370
 Multivariate analysis of variance (MANOVA), analytic computations for      346—350
 
 | Multivariate analysis of variance (MANOVA), compared to discriminant analysis      350 Multivariate analysis of variance (MANOVA), computer analysis      350—370
 Multivariate analysis of variance (MANOVA), effect size      348—350
 Multivariate analysis of variance (MANOVA), geometric view of      342—346
 Multivariate analysis of variance (MANOVA), multiple-group      355—366
 Multivariate analysis of variance (MANOVA), multivariate significance tests in      346—348
 Multivariate analysis of variance (MANOVA), power of test in      349—350
 Multivariate analysis of variance (MANOVA), situations for use      10 342
 Multivariate analysis of variance (MANOVA), two-group      350—355
 Multivariate analysis of variance (MANOVA), univariate significance tests in      348—349
 Multivariate analysis, number of variables      5
 Multivariate analysis, objectives of      238
 Multivariate effect size      349—350
 Multivariate normal distributions, classification rules for      281—283
 Multivariate normal distributions, multiple-group discriminant analysis      312—316
 Multivariate normal distributions, skewness of      375
 Multivariate normal distributions, two-group discriminant analysis      281—283
 Multivariate normality assumption      8
 Multivariate normality assumption and discriminant analysis      263—264
 Multivariate normality tests      380—383
 Multivariate normality tests, graphical test      380—383
 Multivariate normality tests, transformations      383
 Multivariate significance tests      252
 Multivariate significance tests for contrasts      359—360 363
 Multivariate significance tests in multivariate analysis of variance (MANOVA)      346—348
 Multivariate significance tests in two-group MANOVA      351 353
 Naive prediction rule      260
 Nearest-neighbor method, hierarchical clustering method      191
 Newton — Raphson method      340
 No-event      325
 Nominal scale, use of      2 7
 Nonhierarchical clustering      202—211
 Nonhierarchical clustering, algorithms in      203—207
 Nonhierarchical clustering, cluster solution, evaluation/interpretation of      210
 Nonhierarchical clustering, computer analysis      207—211
 Nonhierarchical clustering, evaluation of      217
 Nonhierarchical clustering, example of      228—232
 Nonhierarchical clustering, K-means clustering      205
 Nonhierarchical clustering, method to obtain initial seeds      202—203
 Nonhierarchical clustering, reassignment rales      203
 Nonhierarchical clustering, steps in      202
 Norm of vector      20
 Normality assumptions      375
 Nuil hypothesis and power of test      349—350 375
 Nuil hypothesis and power of test and Type I and Type II errors      374—375
 Nuil hypothesis and power of test,
  statistic for testing of      157 162 Null model      160
 Null vector      21
 Oblique basis, vectors      31
 Oblique factor rotation      140—141
 Observation space, graphical representation of data in      47—50
 Odds, in logistic regression      318—321
 One-factor model with covariance matrix      145—147
 One-factor model with LISREL      153—156
 One-factor model, computation of      132—133
 One-factor model, situations for use      93
 Ordinal scale, use of      2
 Origin, in Cartesian coordinate system      17—19
 Orthogonal contrasts, computer analysis      360—363
 Orthogonal contrasts, multiple-group MANOVA      356—363
 Orthogonal contrasts, multivariate significance tests for      359—360
 Orthogonal contrasts, situations for use      357
 Orthogonal contrasts, univariate significance tests for      357—359
 Orthogonal factor model      94
 Orthogonal factor rotation      137—140
 Orthonormal vectors      25 31 32
 Parallel analysis      77 79
 Parallelogram law of vector addition      22
 Pattern loadings      91 94
 Pearson product moment correlation      39
 Pearson product moment correlation as similarity measure      220
 Percent points of normal probability plot correlation coefficient, table of      466
 Perceptual map, purpose of      307
 Population-based multicollinearity      273
 Power of test in MANOVA      350
 Power of test, purpose of      349—350 375
 Principal axis factoring      107
 Principal axis factoring for factor extraction      141
 Principal components      63 66
 Principal components analysis and objective of study      75—76
 Principal components analysis as dimensional reducing technique      64—65
 Principal components analysis, algebraic approach to      67—71
 Principal components analysis, compared to factor analysis      125—128
 Principal components analysis, compared to two-group discriminant analysis      241—242
 Principal components analysis, computer analysis      67—71
 Principal components analysis, eigenstructure of covariance matrix      84—85
 Principal components analysis, geometric view of      59—66
 Principal components analysis, goals of      58 66
 Principal components analysis, interpretation of principal components      79—80
 Principal components analysis, issues related to use of      71—81
 Principal components analysis, number of components to extract      76—79
 Principal components analysis, singular value decomposition      85—86
 Principal components analysis, situations for use      11 58
 Principal components analysis, spectral decomposition of matrix      86—87
 Principal components analysis, type of data, effect on analysis      72—75
 Principal components factoring      103—107
 Principal components factoring for factor extraction      141—142
 Principal components scores      63 66
 Principal components scores, use of      80
 Probabilities, in logistic regression      317—321
 Projection vector      23 27—28
 Pythagorean theorem, Euclidian distance computation      19
 Q-factor analysis, situations for use      187
 Q-Q plot      376—378
 Quartimax factor rotation      120—121 137
 R-squared, cluster analysis      198 200
 Ratio scale, use of      3
 Ray's V, in stepwise discriminant analysis      266
 Rectangular Cartesian axes      17
 Reflection, of vectors      21
 Regression, logistic regression      8
 Regression, multiple regression      5—9
 Regression, simple regression      5
 Relative goodness-of-fit index, LISREL      159
 Relative noncentrality index      160
 Reliability, cluster analysis      221
 Rescaled noncentralitv parameter      159 160
 Residual matrix, LISREL      160—162
 Root-mean-square residual      106—107 118
 Root-mean-square residual, LISREL      159
 Root-mean-square total-sample standard deviation of the cluster      198 230
 Root-mean-square total-sample standard deviation, formula for      197
 Sample-based multicollinearity      273
 SAS      see "Statistical Analysis System (SAS)"
 Saturated models      421
 Scalar product, of two vectors      20—21 27—28
 Scale invariant, meaning of      46
 Schwartz's criterion      324
 Scree plot      76—77
 Scree plot test      79
 Semipartial R-squared, cluster analysis      198 200
 Shapiro — Wilk test      378 379
 Significance tests for main effects      370
 Significance tests, MANOVA for two independent variables      367—370
 Significance tests, multivariate significance tests      346—348 351 353
 Significance tests, univariate significance tests      348—349 353—355
 Similarity measures      218—220
 Similarity measures, association coefficients      220
 Similarity measures, correlation coefficient      220
 Similarity measures, distance measures      218—220
 Simple regression      5
 Simulation percentiles of
  , table of      467 Simulation probability points of
  , table of      467 Single-linkage method, hierarchical clustering method      191
 Singular value decomposition      85—86
 Skewness of multivariate normal distribution      375
 Skewness of univariate normal distribution      375
 Space, observation space      47—50
 Space, variable space      45—46
 Spectral decomposition of matrix      86—87
 
 |