Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Sharma S. — Applied Multivariate Techniques
Sharma S. — Applied Multivariate Techniques



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Applied Multivariate Techniques

Àâòîð: Sharma S.

Àííîòàöèÿ:

This book focuses on when to use the various analytic techniques and how to interpret the resulting output from the most widely used statistical packages (e.g., SAS, SPSS).


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1995

Êîëè÷åñòâî ñòðàíèö: 512

Äîáàâëåíà â êàòàëîã: 20.11.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Hierarchical clustering methods, evaluation of      211—217
Hierarchical clustering methods, example of      221—228
Hierarchical clustering methods, single-linkage or nearest-neighbor method      191
Hierarchical clustering methods, Ward's method      193
Holdout method, discriminant function validation      273
Image analysis      109
Implied covariance matrix      444—449
Implied covariance matrix, matrix algebra      445—446
Implied covariance matrix, models with observable constructs      444—446
Implied covariance matrix, models with unobservable constructs      446—449
Independence assumption      387—388
Independence assumption, lack of tests for      388
Indicator      91
Interdependence methods      4 10—12
Interdependence methods, cluster analysis      12
Interdependence methods, correspondence analysis      12
Interdependence methods, factor analysis      11
Interdependence methods, loglinear models      12
Interdependence methods, principal components analysis      11
Interdependence methods, situations for use of      4 10
Interval scale, use of      2—3
K-means clustering      205
Kaiser — Meyer — Olkin measure      116
Kolmogorov — Smimov test      378 379
Kurtosis and leptokurtic distribution      375
Kurtosis of univariate normal distribution      375
Kurtosis, normalization of      375
Latent constructs and structural models      13 14
Latent constructs, meaning of      13
Latent factor      91
Leptokurtic distributions, nature of      375
Linear combination, vectors      26—27
Linear discriminant function      242
Linear discriminant function, Fisher's      245 277—278
LISREL      148—177
LISREL, adjusted goodness-of-fit index      159
LISREL, commands      150—152
LISREL, constrained analysis      171 173
LISREL, estimated model parameters, evaluation of      162—164
LISREL, example of use      174—178
LISREL, goodness-of-fit indices      157—159
LISREL, initial estimates      152—157
LISREL, maximum likelihood estimates      422—424
LISREL, McDonald's transformation of the noncentrality parameter (MDN)      159—160
LISREL, model fit, evaluation of      157—162
LISREL, model information and parameter specifications      152
LISREL, model respecification      164—165
LISREL, modification indices      164
LISREL, multigroup analysis      170—173
LISREL, null hypothesis test      157
LISREL, null model      160 161
LISREL, one-factor model      153—156
LISREL, parameter estimates      162—163
LISREL, relative goodness-of-fit index      159
LISREL, relative noncentrality index      160
LISREL, rescaled noncentrality parameter      159 160
LISREL, residual matrix      160—162
LISREL, root mean square residual      159
LISREL, squared multiple correlation      163—164
LISREL, structural model in      421—434
LISREL, terminology related to      148—149
LISREL, total coefficient of determination      164
LISREL, Tucker — Lewis index      160
LISREL, two-factor model      165—170
LISREL, unconstrained analysis      171
Loadings      404
Logistic regression with combination categorical/continuous independent variables      328—332
Logistic regression with one categorical variable      321—327
Logistic regression with one dependent/more than one independent variable      8
Logistic regression, classification      326—327
Logistic regression, compared with discriminant analysis      332—333
Logistic regression, computer analysis      321—335
Logistic regression, contingency table analysis      327—328
Logistic regression, example as illustration of      333—335
Logistic regression, example of use      333—335
Logistic regression, logistic regression model      319—321
Logistic regression, maximum likelihood estimation procedure in      321 324—325 339—341
Logistic regression, model fit, assessment of      323—324
Logistic regression, model information      321
Logistic regression, multiple logistic regression      320
Logistic regression, parameter estimates      324—325
Logistic regression, predicted probabilities, association of      325—326
Logistic regression, probability and odds in      317—321
Logistic regression, situations for use      8 317
Logistic regression, stepwise selection procedure      329 331—332
Logit function      320
Logit transformation      383
Loglinear models, situations for use      12
Loss of homogeneity, in cluster analysis      200
Mahalanobis distance      44—45
Mahalanobis distance as classification method      258
Mahalanobis distance in cluster analysis      220
Mahalanobis distance in MANOVA      343
Mahalanobis distance, definition of      44
Mahalanobis distance, formula for      44
Mahalanobis distance, squared distance in stepwise discriminant analysis      266
Manova      see "Multivariate analysis of variance (MANOVA)"
Maximum likelihood estimation technique in LISREL      422—424
Maximum likelihood estimation technique in logistic regression      321 324—325 339—341
Maximum likelihood estimation technique, computation of      181—185
Maximum likelihood estimation technique, computer analysis      148—173
McDonald's transformation of the noncentrality parameter (MDN)      159—160
Mean, computation of      36
Mean-corrected data, nature of      36
Measure of I      91
Measurement model      14
Measurement scales and number of variables      3—4
Measurement scales, interval scale      2—3
Measurement scales, nominal scale      2
Measurement scales, ordinal scale      2
Measurement scales, ratio scale      3
Minimum average partial correlation (MAP)      117
Minkowski distance      218
Modification indices, LISREL      164
Monotonic analysis of variance (MONANOVA), situations for use      8—9
Multicollinearity and stepwise discriminant analysis      272—273
Multicollinearity, population-based      273
Multicollinearity, sample-based      273
Multigroup analysis, with LISREL      170—173
Multiple regression as canonical correlation      9
Multiple regression with one dependent/more than one independent variable      5—9
Multiple regression, discriminant analysis      262—263
Multiple-group discriminant analysis with more than one dependent/one or more independent variables      10
Multiple-group discriminant analysis, analytical approach to      293—294
Multiple-group discriminant analysis, classification      293 303—304 311—312 313
Multiple-group discriminant analysis, computer analysis      294—307
Multiple-group discriminant analysis, discrete multiple-group discriminant analysis      10
Multiple-group discriminant analysis, discriminant function      294—303
Multiple-group discriminant analysis, F-test in      293 294
Multiple-group discriminant analysis, geometric view of      287—293
Multiple-group discriminant analysis, multivariate normal distribution      312—316
Multiple-group discriminant analysis, new axes, identification of      289 293
Multiple-group discriminant analysis, number of discriminant functions needed      288—289
Multiple-group discriminant analysis, significance of variables, estimation of      294
Multiple-group discriminant analysis, situations for use      10
Multiple-group MANOVA      355—366
Multiple-group MANOVA, computer analysis      355—366
Multiple-group MANOVA, correlated contrasts      363—366
Multiple-group MANOVA, multivariate effects      356
Multiple-group MANOVA, orthogonal contrasts      356—363
Multiple-group MANOVA, univariate effects      356
Multivariate analysis of variance (Manova)      see also "Multiple-group MANOVA" "Two-group
Multivariate analysis of variance (MANOVA) and multivariate effect size      349—350
Multivariate analysis of variance (MANOVA) and univariate effect size      349
Multivariate analysis of variance (MANOVA) with more than one dependent/one or more independent variables      10
Multivariate analysis of variance (MANOVA) with one independent/one dependent variable      343
Multivariate analysis of variance (MANOVA) with one independent/p dependent variables      344—346
Multivariate analysis of variance (MANOVA) with one independent/two or more dependent variables      343—344
Multivariate analysis of variance (MANOVA) with two independent variables      366—370
Multivariate analysis of variance (MANOVA), analytic computations for      346—350
Multivariate analysis of variance (MANOVA), compared to discriminant analysis      350
Multivariate analysis of variance (MANOVA), computer analysis      350—370
Multivariate analysis of variance (MANOVA), effect size      348—350
Multivariate analysis of variance (MANOVA), geometric view of      342—346
Multivariate analysis of variance (MANOVA), multiple-group      355—366
Multivariate analysis of variance (MANOVA), multivariate significance tests in      346—348
Multivariate analysis of variance (MANOVA), power of test in      349—350
Multivariate analysis of variance (MANOVA), situations for use      10 342
Multivariate analysis of variance (MANOVA), two-group      350—355
Multivariate analysis of variance (MANOVA), univariate significance tests in      348—349
Multivariate analysis, number of variables      5
Multivariate analysis, objectives of      238
Multivariate effect size      349—350
Multivariate normal distributions, classification rules for      281—283
Multivariate normal distributions, multiple-group discriminant analysis      312—316
Multivariate normal distributions, skewness of      375
Multivariate normal distributions, two-group discriminant analysis      281—283
Multivariate normality assumption      8
Multivariate normality assumption and discriminant analysis      263—264
Multivariate normality tests      380—383
Multivariate normality tests, graphical test      380—383
Multivariate normality tests, transformations      383
Multivariate significance tests      252
Multivariate significance tests for contrasts      359—360 363
Multivariate significance tests in multivariate analysis of variance (MANOVA)      346—348
Multivariate significance tests in two-group MANOVA      351 353
Naive prediction rule      260
Nearest-neighbor method, hierarchical clustering method      191
Newton — Raphson method      340
No-event      325
Nominal scale, use of      2 7
Nonhierarchical clustering      202—211
Nonhierarchical clustering, algorithms in      203—207
Nonhierarchical clustering, cluster solution, evaluation/interpretation of      210
Nonhierarchical clustering, computer analysis      207—211
Nonhierarchical clustering, evaluation of      217
Nonhierarchical clustering, example of      228—232
Nonhierarchical clustering, K-means clustering      205
Nonhierarchical clustering, method to obtain initial seeds      202—203
Nonhierarchical clustering, reassignment rales      203
Nonhierarchical clustering, steps in      202
Norm of vector      20
Normality assumptions      375
Nuil hypothesis and power of test      349—350 375
Nuil hypothesis and power of test and Type I and Type II errors      374—375
Nuil hypothesis and power of test, $\chi^{2}$ statistic for testing of      157 162
Null model      160
Null vector      21
Oblique basis, vectors      31
Oblique factor rotation      140—141
Observation space, graphical representation of data in      47—50
Odds, in logistic regression      318—321
One-factor model with covariance matrix      145—147
One-factor model with LISREL      153—156
One-factor model, computation of      132—133
One-factor model, situations for use      93
Ordinal scale, use of      2
Origin, in Cartesian coordinate system      17—19
Orthogonal contrasts, computer analysis      360—363
Orthogonal contrasts, multiple-group MANOVA      356—363
Orthogonal contrasts, multivariate significance tests for      359—360
Orthogonal contrasts, situations for use      357
Orthogonal contrasts, univariate significance tests for      357—359
Orthogonal factor model      94
Orthogonal factor rotation      137—140
Orthonormal vectors      25 31 32
Parallel analysis      77 79
Parallelogram law of vector addition      22
Pattern loadings      91 94
Pearson product moment correlation      39
Pearson product moment correlation as similarity measure      220
Percent points of normal probability plot correlation coefficient, table of      466
Perceptual map, purpose of      307
Population-based multicollinearity      273
Power of test in MANOVA      350
Power of test, purpose of      349—350 375
Principal axis factoring      107
Principal axis factoring for factor extraction      141
Principal components      63 66
Principal components analysis and objective of study      75—76
Principal components analysis as dimensional reducing technique      64—65
Principal components analysis, algebraic approach to      67—71
Principal components analysis, compared to factor analysis      125—128
Principal components analysis, compared to two-group discriminant analysis      241—242
Principal components analysis, computer analysis      67—71
Principal components analysis, eigenstructure of covariance matrix      84—85
Principal components analysis, geometric view of      59—66
Principal components analysis, goals of      58 66
Principal components analysis, interpretation of principal components      79—80
Principal components analysis, issues related to use of      71—81
Principal components analysis, number of components to extract      76—79
Principal components analysis, singular value decomposition      85—86
Principal components analysis, situations for use      11 58
Principal components analysis, spectral decomposition of matrix      86—87
Principal components analysis, type of data, effect on analysis      72—75
Principal components factoring      103—107
Principal components factoring for factor extraction      141—142
Principal components scores      63 66
Principal components scores, use of      80
Probabilities, in logistic regression      317—321
Projection vector      23 27—28
Pythagorean theorem, Euclidian distance computation      19
Q-factor analysis, situations for use      187
Q-Q plot      376—378
Quartimax factor rotation      120—121 137
R-squared, cluster analysis      198 200
Ratio scale, use of      3
Ray's V, in stepwise discriminant analysis      266
Rectangular Cartesian axes      17
Reflection, of vectors      21
Regression, logistic regression      8
Regression, multiple regression      5—9
Regression, simple regression      5
Relative goodness-of-fit index, LISREL      159
Relative noncentrality index      160
Reliability, cluster analysis      221
Rescaled noncentralitv parameter      159 160
Residual matrix, LISREL      160—162
Root-mean-square residual      106—107 118
Root-mean-square residual, LISREL      159
Root-mean-square total-sample standard deviation of the cluster      198 230
Root-mean-square total-sample standard deviation, formula for      197
Sample-based multicollinearity      273
SAS      see "Statistical Analysis System (SAS)"
Saturated models      421
Scalar product, of two vectors      20—21 27—28
Scale invariant, meaning of      46
Schwartz's criterion      324
Scree plot      76—77
Scree plot test      79
Semipartial R-squared, cluster analysis      198 200
Shapiro — Wilk test      378 379
Significance tests for main effects      370
Significance tests, MANOVA for two independent variables      367—370
Significance tests, multivariate significance tests      346—348 351 353
Significance tests, univariate significance tests      348—349 353—355
Similarity measures      218—220
Similarity measures, association coefficients      220
Similarity measures, correlation coefficient      220
Similarity measures, distance measures      218—220
Simple regression      5
Simulation percentiles of $b_{2}$, table of      467
Simulation probability points of $\sqrt{b_{1}}$, table of      467
Single-linkage method, hierarchical clustering method      191
Singular value decomposition      85—86
Skewness of multivariate normal distribution      375
Skewness of univariate normal distribution      375
Space, observation space      47—50
Space, variable space      45—46
Spectral decomposition of matrix      86—87
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå