Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Chari V., Pressley A. — A Guide to Quantum Groups
Chari V., Pressley A. — A Guide to Quantum Groups



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: A Guide to Quantum Groups

Àâòîðû: Chari V., Pressley A.

Àííîòàöèÿ:

Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. This book gives a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Researchers in mathematics and theoretical physics will enjoy this book.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Àëãåáðà/Êâàíòîâûå ãðóïïû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1994

Êîëè÷åñòâî ñòðàíèö: 667

Äîáàâëåíà â êàòàëîã: 26.03.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Lie bialgebra, triangular      54
Lie — Poisson structure      19—20 21
Link invariants      167—168 497
Link invariants from R-matrices      504—510
Link invariants from vertex models      510—517
Linking number      500—501
links      167
Links, equivalent      496
Links, oriented      496
Links, skein related      497
Local algebra      158
Loop representation      542
Lusztig's canonical basis, algebraic construction      486—488
Lusztig's canonical basis, positivity property      487
Lusztig's canonical basis, topological construction      488—490
Lusztig's conjectures      359—361
Manin triples      26—32
Manin triples, infinite-dimensional      28
Markov equivalence      502
Markov moves      502
Markov trace      506
Matched pair      48
Matrix elements      106 116 430
Matrix elements and little q-Jacobi polynomials      466
Matrix elements and little q-Legendre polynomials      467
Matrix elements and q-Bessel functions      470—473
Modified classical Yang — Baxter equation (MCYBE)      55
Modified classical Yang — Baxter equivalent solutions      80
Modular Hopf algebra      517—521
Module      108
Module algebra      109
Module coalgebra      109
monodromy      540
Monodromy theorem      549—550
Monoidal functor      138—139
Monomorphism      137
Non-linear Schroedinger equation      422
Non-restricted integral form      289
Non-restricted specialization      288—296
Non-restricted specialization and conjugacy classes      295—296 342—343 347
Non-restricted specialization and R-matrices      348—351
Non-restricted specialization automorphisms      293—295
Non-restricted specialization centre      290—292
Non-restricted specialization defining relations      289
Non-restricted specialization relation with $U(\mathfrak{g})$      290
Non-restricted specialization representations      339—348
Opposite algebra      101
Opposite coalgebra      103
Orbit principle      180 439 442
Ore condition      232 244
Pairing of Hopf algebras      114—115 224—226 461
Partition function      247 249 510
Pentagon axiom      139
Perverse sheaves      490
Peter-Weyl theorem      451
Pluecker relations      448
Poincare — Birkhoff-Witt      199—200 260 282—283 291 298 302 382 394 433
Poisson action      36—37
Poisson algebra      43 177
Poisson algebra deformation      44
Poisson bivector      17
Poisson bracket      16—17
Poisson homogeneous space      22—24
Poisson homogeneous space, Hopf fibration as      23—24
Poisson homogeneous space, symplectic leaves of      38
Poisson manifold      16—21
Poisson manifold, complex      20—21
Poisson map      18
Poisson structure      16—17
Poisson structure, compatible      41
Poisson submanifold      18
Poisson — Hopf algebra      177—178
Poisson — Lie group      21—24 292—293 296
Poisson — Lie group, coboundary      59—68
Poisson — Lie group, compact      35—36
Poisson — Lie group, complex      26
Poisson — Lie group, double      34 37—38 43
Poisson — Lie group, dual      33—34 37—38 296
Poisson — Lie group, factorizable      67
Poisson — Lie group, homomorphism      21
Poisson — Lie group, Lie bialgebra of      26
Poisson — Lie group, subgroup      22
Pontryagin duality      135
Pontryagin product      108
Primitive element      107
Primitive ideal      454
Primitive vector      314 354 383
Principal alcove      362
Pro-finite fundamental group      557
PRODUCT      18
Product, rank of      19 22
Product, second Adler — Gel'fand — Dickii      32
Product, symplectic      18
Product, trivial      18
Product, twisted      42—43
Pseudo-differential operators      31—32
Pseudo-highest weight      396
Pseudo-universal R-matrix      419 423
Pure braid group      144 153 538
Pure sphere braid group      538
q-Bessel function      470
q-Bessel function, addition formula      471
q-Bessel function, Hansel — Lommel orthogonality relation      471
q-binomial coefficient      200 209 301
q-derivative      464
Q-exponential      273
q-factorial      200
q-Hahn polynomial      467
Q-hypergeometric series      430 465 561
q-integral      see Jackson integral
q-Jacobi polynomial, big      468—469
q-Jacobi polynomial, little      466—467
q-Legendre polynomial      467
q-number      200
q-spherical function      468—469
QF algebra      176 216—227 234—240 430
QF algebra *-representations      433 437—438 441—442
QF algebra *-structure      431—432
QF algebra admits a faithful representation      438—439
QF algebra and classical function algebra      306 443—444
QF algebra at roots of unity      301 442—445
QF algebra centre      219
QF algebra, differential calculus on      240—246
QF algebra, highest weight representations      227 433—438 441—442
QF algebra, multiparameter      238—240
QF algebra, PBW factorization      433
QF algebra, rational form      280—281
QF algebra, twisted      439—442
QFSH algebra      190 267—268
Quantization of co-Poisson — Hopf algebras      180
Quantization of Lie bialgebras      180—189
Quantization of Poisson — Hopf algebras      179
Quantization of Poisson — Lie groups      179
Quantization of quasi-Hopf algebras      537
Quantization, deformation      46—47
Quantization, homogeneous      375—376
Quantization, Moyal      46—47 183—187
Quantization, multiparameter      212—213 238—240
Quantization, non-standard      206—207
Quantization, R-matrix      187 222—223 228—234
Quantization, standard      195 208 234—235
Quantization, Weyl      44—45
Quantized algebra of continuous functions      451—452
Quantized algebra of continuous functions, vanishing at infinity      461—462
Quantized function algebra      see QF algebra
Quantum $SL_2$      192—206 216—227
Quantum $sl_2$ and little g-Jacobi polynomials      466—467
Quantum $sl_2$, algebra structure      196
Quantum $sl_2$, automorphisms      309
Quantum $sl_2$, basis      199 220—222 226
Quantum $sl_2$, centre      285 291—292 321—323
Quantum $sl_2$, matrix elements      466
Quantum $sl_2$, quantum Weyl group      262—263
Quantum $sl_2$, quasitriangular structure      201—203
Quantum $sl_2$, real forms      309—311
Quantum $sl_2$, representations      203—206 330—331 343—344
Quantum $sl_2$, tilting modules      364—366
Quantum $sl_2$, universal R-matrix      201 263—265
Quantum $sl_2$, Weyl modules      355—356
Quantum affine algebra      392—394
Quantum affine algebra, PBW basis      394
Quantum affine algebra, pseudotriangular structure      403 423—425
Quantum Casimir element      196 285 291—292 323
Quantum Clebsch — Gordan coefficient      205 467
Quantum coadjoint action      293—296
Quantum coadjoint action and conjugacy classes      295—296
Quantum coordinate ring      see QF algebra
Quantum determinant      219 220 231—233 236
Quantum dimension      122—123 126 365—366 371
Quantum double      127—129 132
Quantum euclidean group      459—462 469—470
Quantum euclidean group representations      462—463
Quantum euclidean group, automorphisms      463
Quantum euclidean group, Haar integral      463—465
Quantum field theory      157—160
Quantum flag manifolds      447—448
Quantum G-space      445—447
Quantum Kac — Moody algebras      207—213
Quantum Kac — Moody algebras, automorphisms      309
Quantum Kac — Moody algebras, centre      212 284—285 290—293 321—324
Quantum Kac — Moody algebras, geometric realization      285—288 308—309
Quantum Kac — Moody algebras, real forms      309—311
Quantum Kac — Moody algebras, representations      313—331
Quantum loop algebras      396
Quantum loop algebras, relation with Yangians      403
Quantum loop algebras, representations      394—403
Quantum orthogonal group      236—238
Quantum plane      217—218 228 240—241
Quantum projective space      451
Quantum R-matrix      133 205 276—277
Quantum R-matrix, elliptic      427
Quantum R-matrix, Frobenius      231
Quantum R-matrix, Hecke      232
Quantum R-matrix, rational      380 419—423
Quantum R-matrix, singularities      425
Quantum R-matrix, strange      230
Quantum R-matrix, trigonometric      424
Quantum Schubert variety      448
Quantum Schur orthogonality relations      457—458
Quantum Serre relation      209
Quantum special linear group      235—236
Quantum spheres      448—451 467—469
Quantum symplectic group      236—238
Quantum torus      442
Quantum trace      122—123 126—127 365—366 370
Quantum Weyl group      262—266 439
Quantum Weyl group and central elements      265
Quantum Weyl group and universal R-matrix      263—265
Quantum Weyl group for quantum affine algebras      424
Quantum Yang — Baxter equation (QYBE)      67 124—125 187 203 229 250
Quantum Yang — Baxter equation (QYBE) and braid groups      504—505
Quantum Yang — Baxter equation (QYBE) and intertwiners      348—351
Quantum Yang — Baxter equation (QYBE) with spectral parameters      250 348—351 380 419—425 511
Quantum Yang — Baxter equation (QYBE), space of solutions of      233—234
Quasi-bialgebra      529
Quasi-bialgebra, quasitriangular      531
Quasi-bialgebra, triangular      531
Quasi-Frobenius Lie algebra      84
Quasi-Hopf algebra      130—131 529
Quasi-Hopf algebra, quasitriangular      531
Quasi-Hopf algebra, triangular      531
Quasi-Hopf QUE algebra      534—537
Quasi-Hopf QUE algebra, quasitriangular      536
Quasi-Lie bialgebra      536
Quasi-modular Hopf algebra      521
Quasi-Poisson — Lie group      48
Quasi-quantum Yang — Baxter equation      531
QUE algebra      176 187—192
QUE algebra, coboundary      188
QUE algebra, cocommutative      187—188
QUE algebra, quasitriangular      188
QUE algebra, rational form      280—281
QUE algebra, triangular      188
QUE double      190 266—267 270
QUE dual      190 267 268—270
quiver      307 488—490
Rational form      280—281
Rational form and R-matrices      327—329
Rational form, adjoint      281
Rational form, simply-connected      281
Real form      117—119
Real form, compact      431
Real form, equivalent      117
Reconstruction theorem      147—149
Reduced decomposition      565
Reduced decomposition, adapted      488
Regular dominant weight      433
Regular isotopy      500 512
Reidemeister moves      496—497
Representation and symplectic leaves      180 439 442 454
Representation, adjoint      110
Representation, characters      315
Representation, completely reducible      391
Representation, corresponding to a Schubert cell      435 441 448
Representation, cyclic      344—348
Representation, dual      110—111
Representation, faithful      438—439
Representation, highest weight      314 324 433
Representation, integrable      314 492 556 566
Representation, physical      158
Representation, pseudo-highest weight      396
Representation, regular      110
Representation, restricted      359
Representation, tame      415
Representation, tensor products      110
Representation, trivial      110
Representation, type      314 394 401
Representation, unitarizable      433
Representation, unitary      118 329—331 433
Representative functions      106 116
Restricted enveloping algebra      304 360
Restricted integral form      296—297
Restricted integral form of a representation      316
Restricted integral form, basis      298
Restricted integral form, generators and relations      299—300
Restricted representation      359
Restricted specialization      300
Restricted specialization and affine Lie algebras      360—361
Restricted specialization, centre      300
Restricted specialization, representations      351—361
Ribbon Hopf algebra      125—127 133 161 276 517
Ribbon Hopf algebra, central elements      168—169
Ribbon tangle      146—147 502
Ribbon tangle closure      164—165
Ribbon tangle, coloured      147
Ribbon tangle, directed      146—147
Ribbon tangle, isotopy invariants      161—166
Right dual      111 122
Rigidity theorems      176—177 212
Robinson — Schensted correspondence      478
Root      563
Root space      564
Root vector      259 282 565
Rotation number      501
Schouten bracket      17
Schubert cell      41 435 441 448
Segment      402
Short exact sequence      137
Simple object      137
Simple reflection      564
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå