Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Chari V., Pressley A. — A Guide to Quantum Groups
Chari V., Pressley A. — A Guide to Quantum Groups



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: A Guide to Quantum Groups

Àâòîðû: Chari V., Pressley A.

Àííîòàöèÿ:

Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. This book gives a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Researchers in mathematics and theoretical physics will enjoy this book.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Àëãåáðà/Êâàíòîâûå ãðóïïû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1994

Êîëè÷åñòâî ñòðàíèö: 667

Äîáàâëåíà â êàòàëîã: 26.03.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
*-homomorphism      117
*-representation      433 437—439 441—442
3-manifold invariants      522—525
Absolute Galois group      557—560
Admissible      80 92 482
Affiliated element      462
Affine Hecke algebra      403
Affine Hecke algebra, relation with p-adic groups      404
Affine Hecke algebra, representations      405—408 410—413
Affine Lie algebra      58 541—543 550—556 565—566
Alexander polynomial      498 500
Algebra      101—102
Algebra, deformation      43
Algebra, opposite      101
Ambient isotopy      496 514
Angle 1-form      501
Antipode      103 529
Antipode, square of      190—192
arrow      482
Associativity constraint      139
Baker — Campbell — Hausdorff formula      46 182 185—186
Big cell      294
Birkhoff factorization theorem      96
Birman — Murakami — Wenzl algebra      334 526
Boltzmann weight      247 351 510
BOND      246
Braid      142—144
Braid closure      501
Braid group      143—144 153 256
Braid group and configuration spaces      538
Braid group, action      257 282 336
Brauer — Frobenius — Schur duality      see Frobenius — Schur duality
Bruhat decomposition      39 41
Bruhat ordering      360 405 565
Burau representation      505
C* -completion      451—452
C* -completion, type of      454
Capelli identity      426
Cartan matrix      562
Cartan matrix, extended      565—566
Casimir element      196 275—276
Category, abelian      136—137 307
Category, additive      136—137
Category, balanced      154
Category, braided monoidal      153
Category, essentially small      148
Category, k-linear      137
Category, monoidal      138—147 530
Category, quasitensor      152—153 329 359 370 531 555 559—560
Category, rigid      139—140 530 555
Category, semisimple      137 391 556
Category, small      148
Category, strict      139
Category, tensor      149—152 531
Central character      290 315 340
Central elements      122 124 168—169 284 321—323
CHARACTER      317 325—326 353—354 361 363
Characteristic p      296 304—306 358—361 555—556
Classical limit of a QF algebra      179
Classical limit of a quasi-Hopf QUE algebra      536—537
Classical limit of a QUE algebra      180—182
Classical r-matrix      54 181—182 183—184
Classical r-matrix and 2-cocycles      62—63
Classical r-matrix and integrable systems      71—77
Classical r-matrix, non-degenerate      62 87
Classical Yang — Baxter equation (CYBE)      54 125 182 187
Classical Yang — Baxter equation (CYBE) and Lie bialgebras      51
Classical Yang — Baxter equation (CYBE) with spectral parameters      87
Classical Yang — Baxter equation (CYBE), class of solution of      96
Classical Yang — Baxter equation (CYBE), equivalent solutions of      80 84 88
Classical Yang — Baxter equation (CYBE), modified      55
Classical Yang — Baxter equation (CYBE), solutions of      80—98
Clebsch — Gordan decomposition      204 326
Co-Jacobi identity      178
Co-Leibniz identity      178
Co-Poisson algebra      178
Co-Poisson Hopf algebra      178
Coadjoint orbits      20 40—41
Coalgebra      102—103
Coassociativity      102
Coassociator      529
Coboundary      51 84 174
Cochain      173
Cocommutator      25 535
Cocycle      25 62 174 533
Cohomology of Hopf algebras      173—177
Cohomology of Hopf algebras, rigidity theorems for      176—177 212
Cokernel      137
Comodule      108
Comodule algebra      109
Comodule coalgebra      109
Compact matrix pseudogroup      see compact matrix quantum group
Compact matrix quantum group      453—454
Compact matrix quantum group, Haar integral      454—458
Complete integrability      68—69
Complete reducibility      318—319 324—325
Comultiplication      102
Configuration spaces      537—538 558
Conformal field theory      159 371—372
Conformal field theory, orbifold      534
Conformal weight      542
Conserved quantities      69
Conserved quantities in involution      69
Continued fraction      331
Continuous series      331
Contravariant form      320
Convolution product      104
Core      146
Corepresentation      110 141
Corepresentation, regular      110
Corepresentation, unitary      118
Coxeter automorphism      91
Coxeter element      489 565
Coxeter number      92 489 565
Crystal basis      478—486
Crystal basis, global      480—486
Crystal graph      484
De Rham complex of quantum $GL_m$      244—245
De Rham complex of quantum $m \Times m$ matrices      242—243
De Rham complex of quantum plane      240—241
De Rham complex, homology of      243—244
Deformation of algebras      43
Deformation of bialgebras      171
Deformation of Hopf algebras      171
Deformation of Poisson algebras      44
Deformation, (mod $h^n$)      172
Deformation, quantization      44 46—47
Degenerate affine Hecke algebra      405
Derivation      190—192
Determinant formula      321 327
Diagonal module      342
Diagram automorphism      309
Differential graded algebra      242
Direct sum      136
Directed tangle      145
Discrete series      330
Discriminant      340—341
Dressing action      37—38
Dressing action and symplectic leaves      38—41
Dressing transformation      37—38
Dual basis lemma      141
Dual Coxeter number      564
Dual object      139
Dual object functor      140
Dynkin diagram      92 562
Dynkin graph      307
Eight vertex model      253
Elliptic solutions of the CYBE      90—91
Elliptic solutions of the QYBE      427
Enhanced quantum Yang — Baxter operator      506
Epimorphism      137
Equivalence of deformations      171
Equivalence of solutions of the CYBE      80 84 8?
Euclidean group      459
Evaluation homomorphism for affine Hecke algebras      407
Evaluation homomorphism for quantum loop algebras      399—401
Evaluation homomorphism for Yangians      386—387
Evaluation representations of affine Hecke algebras      407
Evaluation representations of quantum loop algebras      399—403
Evaluation representations of Yangians      386—391
Exterior algebra      107—108
Fateev — Zamolodchikov model      351
Fibonacci sequence      331
Framing      502
Frobenius Lie algebra      84
Frobenius map      305—306 357 359
Frobenius — Schur duality for $U_{\epsilon}(g)$      334—335 408—410
Frobenius — Schur duality for quantum affine algebras      410—413
Frobenius — Schur duality for Yangians      413—414
Frobenius — Schur duality, classical      332
Fuchsian differential equations      544
Functor, exact      148
Functor, faithful      148
Functor, monoidal      138—139
Functor, tensor      150
Fundamental reflection      see simple reflection
Fundamental representations of quantum loop algebras      399
Fundamental representations of Yangians      384 387—388
Fundamental weight      564
Fusion matrices      155
Fusion ring      155 159 160 371
Fusion rules      154—157 160
Fusion tensor product      371 552—555
Gabriel's theorem      307—308 489
Gel'fand — Naimark — Segal state      439
Gel'fand — Tsetlin basis      476—478
Generalized Cartan matrix      562
Graphs, admissible      482
Graphs, coloured oriented      482
Graphs, crystal      484
Graphs, tensor products of      483—486
Grothendieck group      137—138
Grothendieck ring      139 156
Grothendieck — Teichmuller group      558—559
Grothendieck — Teichmuller group and quasi-Hopf algebras      559—560
Group algebra      105 112 175
Group cohomology      533—534
Group-like      106 193
H-adic topology      105
Haar integral      see integral invariant
Hamiltonian      68—69
Hamiltonian vector field      17
Harish Chandra homomorphism      284 290 321—324
Harish Chandra homomorphism and quantum coadjoint action      296
Harish Chandra's theorem      285 290
Hecke algebra      332—336 404 476
Hecke algebra, representations      405—406
Heisenberg ferromagnet      see XXX model
Heisenberg group      45 218
Heisenberg Lie algebra      44—45 176 186
Hermitian symmetric space      41
Highest weight      314 354 383 434 441
Highest weight module      314 324 354 542
Highest weight module for QF algebras      434 441
Highest weight module for Yangians      383
Highest weight vector      314 383
Hilbert space tensor product      415
Hochschild cohomology      174 254
Homfly polynomial      497—498 509 517
HOMFLY polynomial for trefoil knot      498—499
Hopf algebra      103—105
Hopf algebra, *-structure      117—119 309—311 329 431—432
Hopf algebra, almost cocommutative      119
Hopf algebra, coboundary      123
Hopf algebra, cocommutative      102
Hopf algebra, cohomology      173—177
Hopf algebra, deformations      171
Hopf algebra, dual      111—115 131—132 223—226 234—235
Hopf algebra, Graded      105
Hopf algebra, integral on      115—116 132
Hopf algebra, quasitriangular      123 129—130
Hopf algebra, representations      108—112
Hopf algebra, ribbon      125 133
Hopf algebra, topological      105 114 123
Hopf algebra, triangular      123 150—151
Hopf ideal      103—104
Hopf link      165—166
Hopf's theorem      108
Hyperalgebra      304 358 359—360
Identity object      138
Infinite-dimensional orthogonal group      414—417
Infinitesimal deformation      172
integral      115—116
Integral form, non-restricted      289
Integral form, restricted      297
Intersection cohomology      489
Intertwiner      151 348—351 542
Invariant      115
Invariant bilinear form      563
Invariant bilinear form, orthogonality properties      564
Invariant differential form      245—246
Invariant, non-central      456
Invariant, normalized      115
Ising model      371—372
Jackson integral      457 467
Jacobi identity      17
Jacobson topology      454
Jets      391
Jones polynomial      168 498 500
Kac — Moody algebra      562
Kashiwara's tensor product algorithm      485—486
Kauffman polynomial      499 500 510 517
Kazhdan — Lusztig element      406
Kazhdan — Lusztig polynomial      360
Kazhdan — Lusztig tensor product      552—555
Kernel      137
Kink      501
Kirby move      503 522—525
Kirby move, special      503
Kirillov — Kostant principle      see orbit principle
Knizhnik — Zamolodchikov equation      539—541
Knizhnik — Zamolodchikov equation and hyperplane complements      561
Knizhnik — Zamolodchikov equation and m-point functions      542—543
Knizhnik — Zamolodchikov equation and quantization      543—549 555
Knot      496
Kohno — Drinfel'd monodromy theorem      549—550
Lattice model, exactly solvable      247
Lattice model, integrable      246—253
Lax pair      69—71 73 76
Left dual      111 122
Leibniz identity      17
Length      565
Level      408—409
Level for affine Lie algebras      566
Lie bialgebra      24—33
Lie bialgebra, automorphism      32
Lie bialgebra, coboundary      50—59
Lie bialgebra, cocommutator of      25
Lie bialgebra, derivation      32—33
Lie bialgebra, double      34—35 58—59
Lie bialgebra, dual      33—34
Lie bialgebra, factorizable      67
Lie bialgebra, homomorphism      25
Lie bialgebra, ideal      25
Lie bialgebra, opposite      25
Lie bialgebra, pseudotriangular      56
Lie bialgebra, quasitriangular      54
Lie bialgebra, quotient      25
Lie bialgebra, standard      29—30 34—36 55—56 59 81 93
Lie bialgebra, tangent      26
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå