Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Klein E. — Mathematical methods in theoretical economics
Klein E. — Mathematical methods in theoretical economics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Mathematical methods in theoretical economics

Автор: Klein E.

Аннотация:

Topological and vector space methods have achieved a very distinguished position among the tools of theoretical economics, especially in the area of equilibrium analysis. This book aims at giving a systematic presentation of the basic principles of these two areas of mathematics. With'this aim in mind, we hope the book may prove to be a useful introduction to the field for students of theoretical economics as well as a reference work for economists interested in these problems.
A year of calculus and a semester of elementary linear algebra should provide the reader with the mathematical background needed to understand this book. Some familiarity with modern algebra and differential equations is desirable though not necessary. Finally, it is assumed that the reader has already had some serious exposure to modern mathematical economics at the graduate level.
The book consists of two parts, each of which is essentially self-contained.
Read more at http://ebookee.org/Mathematical-Methods-in-Theoretical-Economics-Topological-and-Vector-Space-Foundations-of-Equilibrium-Analysis_1104691.html#YyPOZIJQkdwEAttv.99


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1973

Количество страниц: 408

Добавлена в каталог: 22.08.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Fan, K.      372
Fang, J.      151 372
Feasible consumption      105
Field      148
Field, matrix over      272
Field, vector space over      172
Finite convex cone      337
Finite covering      66
Finite set      4 48
Finite simplicial complex      see "Complex"
Finkbeiner, D.T.      192 262 243 372
Finsler's theorem      311
First element of set      39
First minor      see "Minor"
Fixed point      121—123
Fixed point of multivalued functions      137—140
Fixed point of single-valued functions      123 135—137
Fixed point, definition      121
Fraenkel, A.      16 372
Franz, W.      34 79 142 372
Frechet, M.      372
Frobenius root      see "Dominant eigenvalue"
Frobenius theorem      350
Frobenius, G.      372
Function      6
Function, definition      6 81 105
Function, multivalued      104—120
Function, set-      102
Function, single-valued      81—103
Fundamental theorem of algebra      281
Gale, D.      152 168 199 277 320 321 322 362 363 366 369 372
Gantmacher, F.R.      192 228 241 299 317 357 373
General equilibrium      152—166
General equivalence      237
Generators of cone      337
Goldberger, A.      373
Greatest lower bound (glb)      43
Group isomorphism      147
groups      145—147
Groups, additive      145
Groups, commutative      147
Groups, isomorphic      147
Groups, multiplicative      146
Hadley, G.      192 262 277 373
Hahn, F.      168 299 371
Hahn, W.      299 373
Halanay, A.      299 373
Half-line      333
Half-spaces      323 333
Hall, D.W.      373
Halmos, P.      16 192 373
Hausdorff, F.      16 373
Hawkins — Simon theorem      276 299 373
Henderson, A.      371
Hermitian matrices      225
Herstein, I.      46 103 353 372 373
hessian      315
Hicks, J.R.      373
Hildenbrand, W.      168 373
Homeomorphic spaces      92
Homeomorphism      92
Homogeneous linear systems      271
Homomorphism      144
Homomorphism, vector space      189—190 193—206
Hopf, H.      142 370
Howe, C.W.      369 373
Hurewicz, W.      373
Hurwicz, L.      299 371
Hyperplane      323
Idempotent laws      11
Idempotent matrices      223
Identification of linear systems      265
Identity elements      21
Identity laws      12
Identity matrix      221
Identity transformation      195
Increasing functions      92
Indecomposability and duality      365—367
Indecomposable rectangular system      366
Indecomposable square matrix      346
Indecomposable von Neumann model      365
Indefinite form      302
Independent subeconomy      227
Independent subsystems      348
Index set      see "Family of sets"
indexed      8
Indirect utility function      see "Utility function"
Infimum      43
Infimum, uniqueness of      43
Infinite sequence      48
Infinite set      4 48
Initial resources      158
Injective mapping      84
Inner product      see "Dot product"
Inner product function      177
Inner product space      177
Input-output system      227 270 273 319 355
Input-output table      15
Integers set of      21
Integral domain      148
Intensity level      360
Interior equilibrium      358
Interior of set      58
Interior point      58
Intermediate-value theorem      95
Intersection      8
Intersection of bicompact sets      69
Intersection of closed sets      56
Intersection of convex cones      335
Intersection of convex sets      73
Intersection of open sets      56
Intersection of sequentially compact sets      68
Intersection of vector subspaces      181
Intervals      22
Intervals, properties of      22—23
Into function      see "Injective mapping"
Intriligator, M.D.      317 373
Inverse elements      21
Inverse matrix      221
Inverse point-to-point mapping      108
Inverse relation      27
Inverse transformation      195 198—200
Irrational numbers set of      21
Isolated point      51
Isomorphic groups      147
Isomorphism      145
Kakutani's theorem      138 164
Kakutani's theorem, relation to Brouwer's theorem      139
Kakutani, S.      142 373
Karlin, S.      103 168 277 299 357 369 373
Kelley, J.L.      79 373
Kemeny, J.G.      16 369 374
Kernel of group homorphism      151
Kernel of linear transformation      196
Keynesian system      208
Knaster — Kuratowski — Mazurkiewicz theorem      135 374
Knaster, B.      374
Koopmans, T.C.      16 277 344 374
Krein — Milman theorem      322 329—333
Kronecker delta      201
Kuhn, H.W.      374
Kuratowski, K.      34 46 79 103 142 374
Lancaster, K.      192 277 312 313 317 357 374
Lang, S.      326 356 374
Lange, O.      277 344 374
Laplace expansion      253
largest element      see "Last element of set"
Last element of set      39
Least upper bound (lub)      43
Lebesgue lemma      135
Lebesgue number      135 136
Lefschetz, S.      374
Length of vector      see "Norm of vector"
Leontief economy      see "Input-output system"
Leontief, W.W.      277 374
Lexicographic ordering      44
Limit point of sequence      50
Limit point of set      51
Linear algebras      205—206
Linear algebras, definition      205
Linear combination of vectors      180
Linear economic theory      340 see
Linear equations system, general theory      see "Linear systems"
Linear equations system, nonnegative solutions of      320
Linear functional      200—203
Linear functional, definition      201
Linear functions      see "Linear transformations" "Vector-space
Linear functions, convex sets and      101 118
Linear functions, multivalued      118
Linear functions, single-valued      100—101
Linear inequality systems      319—323
Linear inequality systems, nonnegative solutions of      321
Linear manifold      323 324
Linear multivalued function      see "Linear functions"
Linear programming      330
Linear subspace      333
Linear systems      266—274 see
Linear systems, characteristic solution of      274
Linear systems, complete solution of      274
Linear systems, fundamental theorem on      274
Linear systems, particular solution of      274
Linear transformations      193—195 see "Vector-space
Linear transformations, composite      194 199
Linear transformations, definition      194
Linear transformations, operations with      194
Linear transformations, special      195 198—200 204
Linear transformations, transpose      204
Linearly independent points in $R^{n}$      124 183
Linearly independent set of vectors      183—186
Lipschutz, S.      79 374
Local stability      297
Lower bounded set      61
Lower bounds of intervals      22
Lower bounds of sets      42
Lower bounds, set of      43
Lower semicontinuity of multivalued functions      111—112
Lower semicontinuity of single-valued functions      114—115
Lower triangular matrices      see "Triangular matrices"
MacLane, S.      151 371
Mappings, point-to-point      80—103
Mappings, point-to-set      104—120
Mappings, set properties and      92—96 113
Market equilibrium      33
Matrices and linear transformations      209—211
Matrices definition      212
Matrices of functions      293—297
Matrices, operations with      212—213
Matrices, special matrices      218 221
Matrices, transpose      218
Matrix $\mu I - A$      352
Matrix equivalence      232—239
Matrix exponential      295 297
Matrix inversion      255—259
Matrix multiplier      295
Matrix operations      212—217
Matrix similarity      239
Matrix-valued functions      293 294
Maximal eigenvalue      352
Maximal element      328
Maximal element of set      39
Maximal independent set of vectors      185
Maximizer      94
Maximum      94
Mazurkiewicz, S.      374
McKenzie, L.      152 168 374
Mendelson, B.      16 34 374
Metric in vector space      176—179
Metric spaces      24—25
Metric spaces, definition      25
Metric, absolute value      25
Metric, definition of      24
Metric, Euclidean      25
Milnor, J.      46 103 373
Minimal element of set      39
Minimizer      94
Minimum      94
Minkowski's theorem      324—329
Minor      249
Mirkill, H.      374
Montgomery, D.      142 372
Morgenstern, O.      344 374
Morishima, M.      168 277 299 369 374
Multiplicative group      146
Multisectoral economic model      350
Multivalued function      105—109
Multivalued function, definition      105
Multivalued function, domain and range      106
Multivalued function, graph of      107
Multivalued transformation      see "Multivalued function"
Murata, Y.      357 374
Natural numbers      see "Positive integers"
Negative definite form      302
Negative definite matrix      307—308
Negative semidefinite form      302
Negative semidefinite matrix      307—308
Neoclassical demand theory      314
Neoclassical production functions      100
Nested principal minors      see Principal minors
Net demand      33
Nikaido, H.      79 103 120 152 168 192 277 299 344 357 369 375
Nilpotent matrices      223
Nonantisymmetric relation      28
Nonhomogeneous linear systems      226
Nonnegative decomposable matrices      351—352
Nonnegative definite form      302
Nonnegative definite matrix      306
Nonnegative indecomposable matrix      350—351
Nonnegative matrix      346
Nonnegativity constraints      346
Nonpositive definite form      302
Nonpositive definite matrix      308
Nonsingular forms      301
Nonsingular linear transformation      198—200
Nonsingular matrix      221
Nonsymmetric relation      28
Norm of point      61
Norm of vector      178
Normal form of matrix      237
Normal vectors      179
Null space of a transformation      see "Kernel"
Nullity of a linear transformation      196
n—dimensional simplex      124 see
One-to-one function      7 see
Onto function      see "Surjective mapping"
Onto—into function      see "Bijective mapping"
Open covering      66
Open intervals      see "Intervals"
Open sets of topology      59
Open sets, definition      55
Open sets, intersection of      56
Open sets, union of      56
Open simplex      124
Operations      19—21
Operations on comparable sets      11
Operations with sets      8
Operations, binary      19
Operations, n-ary      19
Optimum and equilibrium      328
Ordered set, partially      37
Ordered set, totally      37
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте