|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Gorenstein D., Lyons R., Solomon R. — Classification of the Finite Simple Groups (Vol. 1) |
|
|
Ïðåäìåòíûé óêàçàòåëü |
-property 24 28 40—41 62 123 127
-property, partial 30 36 42 64
59 62—63 67—68 76—77 83
, , 121
, , 109 114
, G* of Lie type, of large Lie rank 116 121
, G* of Lie type, of small Lie rank, of characteristic 2 95—96 115
, G* of Lie type, of small Lie rank, of characteristic 2 and Lie rank 1 95—96
, G* of Lie type, of small Lie rank, of odd characteristic 110 112 113
, G* sporadic 109
-balance 21 127—128
-balance, analogue for near components 96
-balance, analogue for two primes 134
-balance 127—128
-groups 54 57 81 99—101
-groups as pumpups 101—102
-groups 95 100
-groups 57—58 63 103
-groups 5 12
-groups, theory of 12 45 48 75—76 138—139
-proper group 12 75—76 79
-groups 57 102—103 129
-groups as pumpups 101—103
37—38 52—53 55 58—59 61 82 86 92—93 105 131
58—61 83 86 105—106 116 118 131
(B, N)-pair 34
(B, N)-pair, split 34
(B, N)-pair, split, recognition of rank 1 36—37 39 49 50 63 113 138
(B, N)-pair, split, recognition of rank 2 37 63 111 113 115 137—138
2-central involution 88
2-local p-rank 135
3/2-balanced functor 43 64—65
Algebraic automorphism 118 121
Alperin, J. 39 41
Amalgam method 5—6 26 39 41 43 60—61 105 131—133
Amalgam method, associated graph 132—133
Artin, E. 11
Aschbacher -block 39 41 53
Aschbacher, M. 18 30 37 39—43 45—48 50 53 89 99 125 129 130
Associated -balanced functor 125
Atlas of Finite Groups 45 50 139
Background references 47—50 140
Background results 59 63 79 87 104 118
Background results, listed 44—50
Balance, k-balance see “Group” (see also “Signalizer functor”)
Bar convention 18 139
Baumann, B. 39 131
Bender method 30 38 43 60 62 104 110 123 134
Bender, H. 16—17 48—50 123
Blackburn, N. 46 47
Bombieri, E. 49
Borel, A. 25
Brauer — Suzuki theory of exceptional characters 38 135
Brauer, R. 51
Brauer, R., theory of blocks 38 46 50 62
Brauer, R., theory of blocks, defect groups of 2-rank at most 3 50
Building 34 73 138
Burnside, W. 29—30
Carter, R. 45 47
Centralizer of element of odd prime order p 35 41 42 51 54—56
Centralizer of element of prime order p 108
Centralizer of involution 11 27ff. 35 39 41—43 51 52 54 61—62
Centralizer of involution pattern 46 59 77 109—110
Centralizer of semisimple element 51 54—56
Character theory 31 46 50 60 62 104 108 135—137
Character theory, ordinary vs.modular 50
Chevalley groups see “Groups of Lie type”
Chevalley, C. 3
Chief factor, series 13—14
Classical groups 6ff. (see also “Groups of Lie type”)
Classification Grid 79 83 85 99—121
Classification Theorem see “Theorems”
Classification Theorem, Theorems - 104—106
Component 17 51 81
Component, solvable 51 67 109
Component, standard 53 91—92
Component, terminal 23 42 53 81 90—92 108
Composition factor, length, series 12
Composition factor, length, series, A-composition factor, length, series 13
Computer 35 45 68
Control of 2-locals 129
Control of fusion 87 122
Control of rank 1 or 2 fusion 91—92
Conway, J. 11
Core 20 (see also “p'-core”)
Core, elimination 40 43 60 110—111
Covering group 16
Covering group, notation for 101
Covering group, universal 17 33
Curtis, C. 35
Das, K.M. 35 71
Delgado, A. 37
Dickson, L. 7
Dieudonne, J. 47
Double transitivity of Suzuki type 95—96
Enguehard, M. 49—50
Expository references 47 141—146
Feit, W. 46 47 48 107—108
Finkelstein, L. 35
Fischer, B. 11 39—40
Fischer, B., transpositions 11 39
Fitting length, series 19
Fitting subgroup 16
Fitting subgroup, generalized Fitting subgroup 17 123
Foote, R. 5 38 53 98
Frattini subgroup 18
Frobenius group 107
Frobenius, G. 29
Frohardt, D. 35
Fusion 29 60 62 63 104 120 122
Fusion, extremal conjugation 122
General local group theory 45—48
Generalized Fitting subgroup 17 123
Geometry associated with a finite group 35 73—74
Gilman, R. 35 39 41
Glauberman, G. 21 38 39 48—50 124 130
Goldschmidt, D. 39 43 49 125
Gomi, K. 37
Gorenstein, D. 29 38 39 41 46 47—50 99 124 126 127
Griess, R.L. 17 35 41 45
Group of Lie type see “Groups of Lie type”
Group order formulas 50 135—137
Group, almost simple 18
Group, alternating see “Alternating group”
Group, covering 16
Group, covering, notation for 101
Group, covering, universal 17 33
Group, DC-proper 12 21
Group, k-balanced 124—125 129
Group, k-balanced, -balanced 125 129
Group, k-balanced, locally balanced 128
Group, k-balanced, locally k-balanced, -balanced 126
Group, k-balanced, weakly /c-balanced, weakly locally /c-balanced 124 126
Group, nilpotent 15—16
Group, p-constrained 20
Group, p-solvable 24
Group, perfect 16
Group, quasisimple 16 53 81
Group, semisimple 16
Group, simple, table of 8—10
Group, solvable 13 16 73—74
Group, sporadic see “Sporadic group”
Groups in see “-groups”
Groups in see “-groups”
Groups in see “-groups”
Groups in see “-groups”
Groups of 3/2-balanced type 120—121
Groups of characteristic 2-type 55 98 116—117
Groups of characteristic p-type 25 116—117
Groups of even type 36 53—55 57—59 81 87 98
| Groups of even type, groups of restricted even type 58—59 82 90 95 99 102 106
Groups of G*-type (G* a target group), groups of 2-amalgam G*-type, 115
Groups of G*-type (G* a target group), groups of 2-central G*-type, of Lie type 111
Groups of G*-type (G* a target group), groups of 2-maximal G*-type mod cores, 111
Groups of G*-type (G* a target group), groups of 2-terminal G*-type, 110
Groups of G*-type (G* a target group), groups of doubly transitive G*-type, , , 112
Groups of generic type 35—36 55—59 63—68 79 106 118—121
Groups of generic type, groups of -generic type 57—59 61
Groups of generic type, groups of generic even type 106
Groups of generic type, groups of generic odd type 106
Groups of generic type, groups of semisimple type 121
Groups of generic type, groups of semisimple type, groups of proper semisimple type 121
Groups of GF(2)-type 40—43
Groups of large sporadic type 37—38 61
Groups of Lie type 6ff. 32ff. 45—49
Groups of Lie type, as (B, N)-pair 34
Groups of Lie type, Borel subgroup of 33
Groups of Lie type, Bruhat decomposition of 34
Groups of Lie type, Cartan subgroup of 33
Groups of Lie type, Chevalley commutator formula 32
Groups of Lie type, Chevalley group 3
Groups of Lie type, Dynkin diagram of 32 71
Groups of Lie type, generation of 48 65—66
Groups of Lie type, Lie rank of twisted 32
Groups of Lie type, Lie rank of untwisted 32
Groups of Lie type, monomial subgroup of 34
Groups of Lie type, monomial subgroup of, reduced 34
Groups of Lie type, parabolic subgroup of 26 62
Groups of Lie type, rank 1, subgroup of 33 35 71
Groups of Lie type, Ree group 3 10 49 50
Groups of Lie type, root subgroup of 32
Groups of Lie type, root system 32
Groups of Lie type, root system, fundamental system 32
Groups of Lie type, Schur multiplier of 45 48
Groups of Lie type, semisimple element of 51
Groups of Lie type, Steinberg presentation of, relations 33
Groups of Lie type, Steinberg variation 7
Groups of Lie type, Suzuki group 3 10
Groups of Lie type, universal version of 33
Groups of Lie type, universal version of, and universal covering group 33
Groups of Lie type, untwisted see “Chevalley group”
Groups of Lie type, Weyl group of 33 35
Groups of odd order, groups of -uniqueness type 107
Groups of odd order, groups of odd order uniqueness type 107
Groups of odd order, groups of {p, q}-parabolic type 107—108
Groups of odd type 58—59 81 86
Groups of quasithin type 82 105 114—116
Groups of quasithin type, groups of 2-amalgam type 114—115
Groups of quasithin type, thin subcase 37 41
Groups of special type 36—38 58—61 79 103—106 106—108 110—118
Groups of special type, groups of -special type 58—60 103—104
Groups of special type, groups of -special type, groups of -type 61—63 83 104 110—113 123
Groups of special type, groups of -special type, groups of -type, -subcase 61—63
Groups of special type, groups of -special type, groups of -type 104 114
Groups of special type, groups of -special type, groups of -type, groups of 2-terminal -type 114
Groups of special type, groups of -special type 58—60 105—106
Groups of special type, groups of -special type, groups of -type 105 116—118
Groups of special type, groups of -special type, groups of -type 106 118
Groups of special type, groups of -special type, groups of -type, groups of p-terminal -type 118
Groups of special type, groups of -special type, groups of quasisymplectic -type 117
Groups of special type, groups of -special type, groups of wide -type 116 133—135
Groups of special type, groups of -uniqueness type 107
Groups of special type, groups of odd order uniqueness type 107
Groups of special type, groups of special even type 105 106 114—118
Groups of special type, groups of special odd type 103—104 106—108 110—114
Groups of special type, groups of {p, q}-parabolic type 107—108
Groups with specified 2-structure, groups of 2-rank at most 2 36 135
Groups with specified 2-structure, groups of 2-rank at most 3 50
Groups with specified 2-structure, groups with semidihedral or wreathed Sylow 2-subgroups 76 136—137
Groups with specified 2-structure, groups with semidihedral or wreathed Sylow 2-subgroups, Brauer group order formula for regular groups 137
Groups with specified 2-structure, groups with semidihedral or wreathed Sylow 2-subgroups, characteristic power 136—137
Hall -subgroup 46
Hall, M. 11
Hall, P. 16 25
Harada, K. 11 39 89
Hayashi, M. 37
Holt, D. 89
Hunt, D. 49
Huppert, B. 46 47
Identification of simple groups see “Recognition of simple groups”
Involution fusion pattern 46 60 62 109 110
Isaacs, I.M. 46 47
Isomorphism question 11
Janko, Z. 11 49
Klinger — Mason method 61 105 116—118
Klinger, K. 38 116—117
Layer 17 (see also “p-layer”)
Leech lattice 11 35
Linear group 18
Local subgroup 19 (see also “p-local subgroup”)
Local subgroup, general structure of 27—28
Lyons, R. 41 48—50 99
Mason, G. 37—38 41 116—117
Mathieu, E. 11
Maximal subgroup 60 62—63 123
McBride, P. 30 49 124
Meierfrankenfeld, U. 130
Modules, failure of factorization 26 130 133
Modules, quadratic 25—26 123 130
N-group 38—39 73
Near component 50 96—97 129—131 133
Near component, alternating 96—97 130
Near component, associated module of 96
Near component, linear 96—97 130 131
Near component, standard 98
Near component, type 97
Neighbor 42 64—65 71 119
Neighbor, semisimple 64—65
Neighborhood 55—58 59 63—68 118—120
Neighborhood, - 61 117
Neighborhood, base of 119
Neighborhood, example of 56—57 68—70
Neighborhood, level 66 121
Neighborhood, span of 66—67 121
Neighborhood, vertical 65 76—77 118—120
Niles, R. 39 50
Notation 139
Odlyzko, A. 49
Outer automorphisms 18
Overall strategy of proof 35—38 42—43
O’Nan, M. 18 45 49 138
p'-core 19 (see also “Core”)
p'-core, elimination 23—24 37 61 120
p'-core, embedding of p’-core of p-local subgroups 21 127—128
p-central p-element 101
p-component 20
p-component preuniqueness hypothesis 91—92
p-component preuniqueness subgroup see “Uniqueness subgroups”
p-component uniqueness theorems 30—31 38 53 65 90—92 118
p-component, p-terminal 22ff. 63 108—109
p-component, p-terminal, pumping up to 23 108—109
p-component, solvable 64 109
p-layer 20
p-local subgroup 19
p-local subgroup, embedding of p'-core of 20—21 127—128
p-local subgroup, embedding of p-layer of 21—24 127
p-source 64
Parts of the series 4—5 59 77—78 80
Parts of the series, Part II 38 52—53
Parts of the series, Part III 36
Parts of the series, Part IV 37
Parts of the series, Part V 37 38
perfect central extension see “Covering group”
Permutation group 18 35
Permutation group, doubly transitive 74 112—113 138
Permutation group, doubly transitive of Suzuki type 95—96
Permutation group, doubly transitive, split (B,N)-pair of rank 1 95—96 112—113 138
Permutation group, highly transitive 11 35
Permutation group, of rank 3 11
Permutation group, representation as 31
|
|
|
Ðåêëàìà |
|
|
|