|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Gorenstein D., Lyons R., Solomon R. — Classification of the Finite Simple Groups (Vol. 1) |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Peterfalvi, T. 48—49 96 107 138
Phan, K.-W. 35 71
Presentation 31—35
Presentation of classical groups 35
Presentation of symmetric groups 32 36 68—70
Presentation, Steinberg presentation of groups of Lie type 32 33 36 51 118
Presentation, Steinberg presentation of groups of Lie type, a la Curtis — Tits 34 67 70
Presentation, Steinberg presentation of groups of Lie type, a la Gilman — Griess 35 67 71
Pumpup 22 127
Pumpup as , , or -group 103 114
Pumpup, diagonal, proper, trivial, or vertical 22 127
Quasisimple group 16 53 81
Quasithin 5 37 41 43 60—61 82 105 114—116
Recognition of simple groups 31—35
Recognition of simple groups, alternating groups 32
Recognition of simple groups, groups of Lie type 32—35 42 49 137—138
Recognition of simple groups, recognition of symmetric groups 68—70
Recognition of simple groups, sporadic groups 35
Ree groups 3 10 49 50
Ree, R. 10
Rowley, P. 37
Schreier property 21 24 29
Schreier, O. 21
Schur multiplier 18 45 48 139
Schur, I. 17
Scott, L. 18
Section 12
Seitz, G. 48
Sibley, D. 48
Signalizer functor 29—30 124ff.
Signalizer functor method 29—30 36—38 41 60 64—65 104—105 116 118 120 128—129
Signalizer functor, closed 124
Signalizer functor, closure 30 124
Signalizer functor, complete 124
Signalizer functor, k-balanced, weakly k-balanced 124—126
Signalizer functor, solvable 124
Signalizer functor, trivial 124 128
Simple groups, table of 8—10
Simplicity criteria 29—31
Sims, C. 39 45
Sims, C., conjecture 74
Smith, F. 41
Smith, S. 41
Solomon, R. 35 39 53
Sporadic groups 3 6 9 11 87 100
Sporadic groups, as -group 103
Sporadic groups, as target group 77 87
Sporadic groups, background properties of 44—48 50
Sporadic groups, existence and uniqueness of 46—47 50 72
Sporadic groups, individual groups, Baby Monster 11 38 87 100
Sporadic groups, individual groups, Conway groups , , 11 38 42 72 87 100
Sporadic groups, individual groups, Fischer 3-transposition groups , , 11 38 87 100
Sporadic groups, individual groups, Fischer — Griess Monster 3 11 38 42 47 61 72 87 100
Sporadic groups, individual groups, Harada — Norton 11 67—68 87 100
Sporadic groups, individual groups, Held 11 87 100
Sporadic groups, individual groups, Higman — Sims HS 11 87 100
Sporadic groups, individual groups, Janko , , , 3 11 87 100
Sporadic groups, individual groups, Lyons — Sims Ly 11 45 87 100
Sporadic groups, individual groups, Mathieu , , , , 11 42 46 72 87 100
Sporadic groups, individual groups, McLaughlin Mc 11 87 100
Sporadic groups, individual groups, O’Nan-Sims O'N 11 87 100
Sporadic groups, individual groups, Rudvalis Ru 11 87 100
Sporadic groups, individual groups, Suzuki Suz 11 87 100
Sporadic groups, individual groups, Thompson 11 87 100
Standard form problems 38
Steinberg, R. 3 7 10 17 45 47 48
Stellmacher, B. 37 50
Strongly -embedded subgroup see “Uniqueness subgroups”
Strongly closed subgroup 61
Strongly embedded subgroup see “Uniqueness subgroups”
Strongly p-embedded subgroup see “Uniqueness subgroups”
Stroth, G. 5 37 38 43 53 98—99 107 130
Subterminal pair 64—66
Suzuki groups 3 10
Suzuki, M. 10 38 46 47 49
Symmetric group 6
Symplectic pair 117
Symplectic pair, faithful, of -type, trivial 117
Symplectic type 2-group 116
Tanaka, Y. 37
Target group (G*) 27 54—55 86—87
Target group (G*) in 89
Target group (G*) of Lie type 76—77
Target group (G*) of Lie type, , , , , , q odd 61—63
Target group (G*) of Lie type, of large Lie rank 63—68 71 76
Target group (G*) of Lie type, of Lie rank 1 77 110—113
Target group (G*) of Lie type, of small Lie rank 77 110—116
Target group (G*), , 63—68 76—77
Target group (G*), , , 68—70
Target group (G*), , 77 111—112 114—116
Target group (G*), quasithin 77
Target group (G*), sporadic 77 87
Target group (G*), sporadic, large sporadic 116—117
Target group (G*), the 8 families () 86
Theorem 5 86 92 106—108 129 131
Theorem , Corollary 92
Theorem , stages 1—3 98—99
Theorem PS 92
Theorem SA 89 97
Theorem SE 89—90
Theorem SE, stages 1—2 95—96
Theorem SF 89
Theorem SZ 88—89
Theorem TS 92 114
Theorem U(2) 89 97 106
Theorems , , 92
Theorems, - 104—106
Theorems, Alperin — Brauer — Gorenstein — Walter classification of groups of 2-rank 2 39 41
Theorems, Alperin — Goldschmidt conjugation theorem 97 122
| Theorems, Aschbacher classical involution theorem 41—43
Theorems, Aschbacher proper 2-generated core theorem 89
Theorems, Aschbacher uniqueness case theorem 43 92
Theorems, Aschbacher — Bender — Suzuki strongly Z-embedded subgroup theorem 88
Theorems, Aschbacher — Gilman component theorem 39 40 52 75
Theorems, Aschbacher — Gilman component theorem, generalized to odd primes 75—76
Theorems, Baumann — Glauberman — Niles theorem 50 130—131
Theorems, Baumann — Glauberman — Niles theorem, revision of 50
Theorems, Bender F*-theorem 17 138
Theorems, Bender uniqueness theorem 123
Theorems, Bender — Suzuki strongly embedded subgroup theorem 30—31 33 36 38 52
Theorems, Bender — Suzuki strongly embedded subgroup theorem for -proper groups 75
Theorems, Bender — Thompson signalizer lemma 116
Theorems, Brauer — Suzuki quaternion theorem 52
Theorems, Burnside -theorem 30
Theorems, classification theorem 6 79
Theorems, classification theorem, comparison of new and old proofs 41—44 55 63 72 74—76 98
Theorems, classification theorem, four-part division 58—59
Theorems, classification theorem, main logic 106
Theorems, classification theorem, stages of the proof 61 106—121
Theorems, Curtis — Tits theorem 35 63 67 113 115
Theorems, Curtis — Tits theorem, variations for classical groups 35 63 113 115
Theorems, Feit — Thompson theorem see “Odd Order Theorem”
Theorems, Fong — Seitz classification of split (B, N)-pairs of rank 2 63 138
Theorems, Gilman — Griess recognition theorem for groups of Lie type 35 67 71
Theorems, Glauberman Z*-theorem 30 31 36 38 43 48 79 122 135
Theorems, Glauberman ZJ-theorem 26 38
Theorems, global C(G, ?)-theorem 38 53
Theorems, Goldschmidt strongly closed abelian 2-subgroup theorem 43 89
Theorems, Gorenstein — Harada sectional 2-rank at most 4 theorem 39 42 43
Theorems, Gorenstein — Walter dihedral Sylow 2-subgroup classification 50 74
Theorems, Gorenstein — Walter dihedral Sylow 2-subgroup classification, revision by Bender and Glauberman 50 74
Theorems, Hall — Higman theorem B 26
Theorems, Holt’s Theorem 89
Theorems, Jordan — Holder theorem 12ff
Theorems, local C(X, T)-theorem 50 96—97 129—131
Theorems, Mason quasithin theorem 37 41
Theorems, odd order theorem 30 31 36 38—39 48 79 104 134 135
Theorems, odd order theorem, revision of 48 74 123
Theorems, p-component uniqueness theorems 30—31 38 53 65 90—92 118
Theorems, Schur — Zassenhaus theorem 24
Theorems, signalizer functor theorems 49 124
Theorems, Solomon maximal 2-component theorem 39
Theorems, theorem 104
Theorems, Theorem , stages 1—4 106—108
Theorems, theorem 104
Theorems, Theorem , stages 1—4 110—113
Theorems, theorem 104
Theorems, Theorem , stages 1—3 113
Theorems, theorem 105
Theorems, Theorem , stages 1—4 114—116
Theorems, theorem 105
Theorems, Theorem , stages 1—4 116—118
Theorems, theorem 106
Theorems, Theorem , stages 1—2 118
Theorems, theorem 106
Theorems, Theorem , stages 1—5 118—121
Theorems, Theorem M(S) 5 90 99 129
Theorems, Theorem M(S), stages 1—3 97—98
Theorems, Thompson -lemma 21
Theorems, Thompson dihedral lemma 134
Theorems, Thompson factorization theorem 26 130
Theorems, Thompson N-group classification theorem 38—40 43
Theorems, Thompson order formula 114 136
Theorems, Thompson replacement theorem 26 130
Theorems, Thompson transfer lemma 55 104 122 128
Theorems, Three subgroup lemma 17
Theorems, Timmesfeld root involution theorem 42—43
Theorems, Tits classification of spherical buildings of rank at least 3 73
Theorems, Walter classification of groups with abelian Sylow 2-subgroups 74
Theorems, Walter classification of groups with abelian Sylow 2-subgroups, revision by Bender 74
Thompson subgroup 26 130
Thompson, J.G. 37 39—40 43 48 49 107—108 130
Tightly embedded subgroup 39 43
Timmesfeld, F.G. 37 39 40
Tits system see “(B N)-pair”
Tits, J. 10 25 34 137
TRANSFER 29 31 74 107
Triality 10
Ulmost strongly p-embedded subgroup see “Uniqueness subgroups”
Ulternating group 6 32 36
Ulternating group as , , or -group 103
Uniqueness case 5 38 43 53
Uniqueness grid 79 83 84 87—89
Uniqueness subgroups, -uniqueness subgroup 94
Uniqueness subgroups, 2-uniqueness subgroup 82 87—89
Uniqueness subgroups, near component 2-local uniqueness subgroup 97
Uniqueness subgroups, p-component preuniqueness subgroup 90—93
Uniqueness subgroups, p-component preuniqueness subgroup of strongly closed type 93
Uniqueness subgroups, p-component preuniqueness subgroup, controlling rank 1 or 2 fusion 91—92
Uniqueness subgroups, p-component preuniqueness subgroup, standard 91—92
Uniqueness subgroups, p-component preuniqueness subgroup, wreathed 93
Uniqueness subgroups, p-uniqueness subgroup, p odd 52—53 82
Uniqueness subgroups, p-uniqueness subgroup, p odd, strong p-uniqueness subgroup 52—53 58 63 68 82—83 92—96 99 106
Uniqueness subgroups, strongly embedded subgroup 30—31 75 82 87—89 95—96
Uniqueness subgroups, strongly p-embedded subgroup 31 82 91—92
Uniqueness subgroups, strongly p-embedded subgroupm almost strongly p-embedded subgroup 91—94
Uniqueness subgroups, strongly p-embedded subgroupm almost strongly p-embedded subgroup, almost p-constrained 93
Uniqueness subgroups, strongly p-embedded subgroupm almost strongly p-embedded subgroup, of strongly closed type 93
Uniqueness subgroups, strongly p-embedded subgroupm almost strongly p-embedded subgroup, wreathed 93
Uniqueness subgroups, strongly Z-embedded subgroup 87—89 96
Uniqueness subgroups, weakly Z-embedded subgroup 89
Uniqueness subgroups, {2, p}-uniqueness subgroup 53 98—99
Walter, J.H. 29 38—39 124 126 127
Ward, H. 49
Weak closure method 43
Weakly Z-embedded subgroup see “Uniqueness subgroups”
Wong, W. 35
Yoshida, T. 29
|
|
|
Ðåêëàìà |
|
|
|