Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Santalo L., Kac M. — Integral geometry and geometric probability
Santalo L., Kac M. — Integral geometry and geometric probability



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Integral geometry and geometric probability

Авторы: Santalo L., Kac M.

Аннотация:

Integral geometry originated with problems on geometrical probability and convex bodies. Its later developments, however, have proved to be useful in several fields ranging from pure mathematics (measure theory, continuous groups) to technical and applied disciplines (pattern recognition, stereology). This book is a systematic exposition of the theory and a compilation of the main results in the field. The volume can be used for a one-semester undergraduate course in probability and differential geometry or as a complement to classical courses on differential geometry, Lie groups, or probability.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1976

Количество страниц: 426

Добавлена в каталог: 18.08.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Geometric probability      105 235
Geometric probability in n.e. spaces      312
Geometric probability on the hemisphere      313
Geometric probability on the sphere      312
Geometric probability, problems      43 105—108 138—142 235 267 312
Gerriets, J.      138
Ghosh, B.      49
Giger, H.      278(228) 282(226) 291
Gilbert, E.N.      297(230) 327
Goldberg, S.I.      143
Goldman, J.R.      18
Goodman, A.W.      39
Goodman, R.E.      39
Gotz, A.      31(70)
Goudsmit, S.      58
Graev, M.I.      346 347 348
Grassmann manifolds      202
Grassmann manifolds, volume of      203
Great circles at random      329
Green, J.W.      60 347
Green, L.W.      351
Grenander, U.      294(237)
Gridgeman, N.T.      72
Griffiths, P.A.      343 344
Groemer, H.      65 210 217(243) 223
Group of affine transformations      179
Group of motions      12 160 198
Group of motions in $E_{n}$      196—199
Group of motions in n.e. spaces      300
Group of motions in the plane      12 80—82
Growth rate      298
Gruenbaum, B.      1 38 350(247 248)
Grunwald, G.      123
Guenther, W.C.      100
Guggenheimer, H.      10 11 128 249 351(253 254)
Guter, R.S.      103(260)
Haar measure      157
Hadwiger's condition      121—122
Hadwiger's condition for n.e. plane      324
Hadwiger, H.      1 13 39 59(270) 60 118 121 122 124 134 138 200(274) 217 218(274) 223 226 229(271) 235 237 238 248(274) 260 275 278(274) 280 303 324 350
Hammersley, J.M.      212
Harding, E.F.      58
Heil, E.      10(296)
Helgason, S.      177(298) 345 347 348
Hemmi, D.      10
Herglotz formula      239
Herglotz formula in elliptic space      319
Herglotz, G.      239 302 319
Hermann's formulas      349
Hermann, R.      330 349
Hermitian elliptic geometry      339
Hermitian group      339
Hermitian inner product      339
Hermitian metric      340
Hilbert, D.      288(125)
Hilliard, J.E.      292(309c)
Holcomb, D.F.      213
Holditch theorem      11
Holgate, P.      24
Holomorphic curves      343
Hombu, H.      41(682)
Homogeneous affinities      181
Homogeneous spaces      165
Homogeneous spaces, density in      165 169 170
Homogeneous spaces, invariant measure in      165
Homogeneous symplectic group      344
Horneffer, K.      247
Horocycle convex sets      315
Horocycles      314
Horospheres      347
Horowitz, M.      62
Hostinsky, B.      72(318)
Hurwitz, A.      59
Hyperbolic n.e. space      300
Hyperplanes in general position      328
Hypersurface polar      303
Hypersurfaces and linear spaces      247
icosahedron      230
Ideal points      299
Independent differential forms      145 354
Inequalities for tetrahedrons      311
Inequality of Ambarcumjan      37 231
Inequality of Fary      254 255
Inequality of Feller      41
Inequality of Fenchel      254
Integral formulas      13 16 21 42 58 59 95 221 230
Integral formulas and Fourier series      59
Integral formulas in elliptic space      314 322
Integral formulas in Hermitian space      341—343
Integral geometry in complex spaces      338
Integral geometry in Riemann manifolds      330—338
Integral geometry on surfaces      350
Integral manifold      146
Integral of the power of chords      46 237
Integral of volume      258
Integrals and quermassintegrale      224—227
Integrals for cylinders      271
Integrals of a flattened convex body      227—229 243
Integrals of mean curvature      222 223
Integrals of n.e. sphere      308
Interior parallel set      8
Internal cover      32
Intersection of manifolds      258—260
Intersection of manifolds in n.e. spaces      323
Intersection, with random lines      289
Intersection, with random planes      286
Intersection, with random spheres      293
Invariant densities in homogeneous spaces      165-169
Invariant subgroups      169
Invariant volume element      156
Invariant volume element of affine groups      181
Inverse Radon transform      346
Isoperimetric deficit      119
Isoperimetric inequality      36 37 104 119 123
Isoperimetric inequality in n.e. plane      324
Isoperimetric inequality of Banchoff and Pohl      252
Isoperimetric inequality of Chakerian      232
Isotropic random simplexes      201
Isotropy group      170 173
Iwasawa, M.      213
Jacobian matrix      149
Jaglom, I.M.      1
Jakeman, A.J.      290(321 322)
John, F.      346 348
Johnson, W.A.      298
Jurtova, L.M.      195
Jusupov, D.      315
Kac, M.      72
Kelly, E.      348
Kelly, P.J.      300
Kendall, D.G.      58 137(332) 138 297(333)
Kendall, M.G.      13 24 51(335) 58 62(335) 63(335) 72 77(335) 138(335) 198(335) 212(335) 233(335) 276(335) 286(335) 290 292
Kinematic density for projective group      192
Kinematic density in $E_{2}$      85 109—110
Kinematic density in $E_{n}$      256
Kinematic density in n.e. spaces      304
Kinematic density, other expressions      88
Kinematic fundamental formula for convex sets      267 282
Kinematic fundamental formula for cylinders      270 277 283
Kinematic fundamental formula for strips      118 283
Kinematic fundamental formula in $E_{2}$      113—116
Kinematic fundamental formula in $E_{n}$      262
Kinematic fundamental formula in n.e. spaces      320
Kinematic fundamental formula of Chern — Federer      276
Kingman, J.F.C.      62(336) 65 201 237(337)
Klamkin, M.S.      138
Klee, V.      10 65(338)
Knight, K.F.      26
Knothe, E.      324(341)
Kobayashi, S.      143 202(341a)
Krickeberg, K.      19 58 67
Kubota's formula      217
Kubota, T.      10 217
Kulle, R.D.      260
Kurita, M.      111(351) 170(353) 277
Langford, E.      21
Lashof, R.K.      254
Lattice points, covered by a region      137 138
Lattices in $E_{2}$      128
Lattices in $E_{n}$      274
Lattices of balls      274
Lattices of convex sets      140 275
Lattices of cubes      274
Lattices of curves      134
Lattices of domains      131
Lattices of equilateral triangles      140
Lattices of figures      128
Lattices of fundamental regions      128
Lattices of points      135
Lattices of regular hexagons      133 139
Lattices of squares      133
Leaves      331
Lebesgue, H.      13 58
Left translations      81 149
Left-invariant differential forms      83 150
Legrady, K.      345
Lehner, J.      175(360)
Lekkerkerker, C.G.      10 11(361) 176(361) 190
Length of continuum of points      112
Length of curve      31 142
Length of order m      38
Lenz, H.      223
Levy, P.      24
Lie group      149
Lie transformation group      173
Line density in $E_{2}$      28—30
Line density in $E_{3}$      211
Line density, invariance by reflection      39
Line density, invariance by refraction      39
Linear graphs      42
Linear isotropy group      170
Linear search      103
Linear subspaces in $E_{n}$      199
Linear subspaces through origin      185 186
Linear subspaces, intersecting a manifold      243—247
Lines intersecting a convex set      30 65
Lines intersecting curve      30
Lines that cut two convex sets      32—34
Lines that separate two convex sets      32—34
Linking numbers      251 252
Loomis, L.H.      12
Lord, R.D.      212
Luccioni, R.      193(370) 194
Lucenko, A.V.      195
Lueko, G.      63(375)
Maak, W.      31(377) 111(377 378) 247 260
Macbeath, A.M.      190
Mack, C.      101 102
Mahler, K.      10 11
Mallows, C.L.      48
Mannion, D.      25
Mantel, L.      72
Mappings of differentiable manifolds      148
Marriot, F.H.      290
Masotti Biggiogero, G.      16 21(394) 58 59(396) 231(395 397)
Masson, J.      26
Matheron, G.      19 67 290 297(399—401)
Matschinski, M.      20
Maurer — Cartan equations      152
Maurer — Cartan forms      151
Maurer — Cartan forms for affinities      180
Maurer — Cartan forms for matrix groups      153—154
McIntire, G.A.      103(104)
Mean breadth      217
Mean cross-sectional measures      217
Mean density in $E_{n}$      210
Mean distances in circle      49
Mean distances in equilateral triangle      49
Mean distances in n-ball      212
Mean distances in rectangle      49
Mean free path      42
Mean length of chords      30 60—63
Mean number of faces      295
Mean number of regions      295
Mean number of vertices      295
Mean values and curvatures      252
Mean values for convex polyhedrons      250
Mean values for integrals of mean curvature      267—269
Mean values of domains covered r times      101
Mean values of projected volumes      216
Measurable groups      177
Measure of continuum of points      260
Mehl, R.F.      298
Meijering, J.L.      297
Melzak, Z.A.      104
Miles, R.E.      17 18 19 20 23 56(414) 57 58 59(418) 65 67 100 197 198(408) 201 212 249 250(412) 290 294(199) 296 297 298 313 327 328
Minkowski and Hlawka theorem      190
Minkowski's inequality      124—125
Minkowski's theorem      176
Mixed area of Minkowski      4
Mixed convex set      4
Moments of gamma function      18
Moments of sizes of particles      291
Moran, P.A.P.      13 24 32 51(335) 62(335) 63(335) 72 77(335) 138(335) 142 198(335) 212(335) 218 233(335) 276(335) 286(335) 290 292 294(335) 327
Morgenthaler, G.W.      276(432)
Morimoto, M.      348
Morton, R.R.A.      111(434)
Morton, V.M.      211
Mostow, G.D.      177(436)
Motions in $E_{n}$      196
Motions in plane      80—82
Moving frames      180
Mueller, H.R.      350
Mullooly, J.P.      25(440)
Myers, E.J.      293(442)
n-dimensional Euclidean space      196
n-dimensional noneuclidean space      299
n-dimensional projective space      192 299
Nachbin, L.      157(443)
Nearly spherical particles      288 292
Neuman, F.      10(445—448)
Ney, P.E.      25
Neyman, J.      276
Nicholson, W.L.      290
Nijenhuis, A.      276
Noebeling, G.      111(455) 118 260
Nomizu, K.      143 202(341a)
Noneuclidean elliptic geometry      300
Noneuclidean hyperbolic geometry      175 300
Noneuclidean integral geometry      299
Noneuclidean motions      300
Nonseparable convex sets      39
Normal chains      340
Normal congruence      335 336
Novikoff, A.B.J.      49(457) 72 294(457)
Obrechkoff, N.      324(458)
octahedron      229
Ohmann, D.      10 217(460 461)
Orthogonal group      149 197
Orthonormal frame      196
Osculating linear spaces      343
Oshio, S.      134(464 465)
Owens, O.G.      351
Packing of segments      126
Pairs of linear spaces      205
Pairs of lines      49
Pairs of points      44 237
Palais, R.S.      331
Palasti, I.      26
Paloheimo, J.E.      103(468)
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте