Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Fulton W. — Intersection theory
Fulton W. — Intersection theory



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Intersection theory

Àâòîð: Fulton W.

ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Àëãåáðà/Àëãåáðàè÷åñêàÿ ãåîìåòðèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2-nd edition

Ãîä èçäàíèÿ: 1984

Êîëè÷åñòâî ñòðàíèö: 470

Äîáàâëåíà â êàòàëîã: 23.03.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Abel — Jacobi map      14 387 390
Abelian variety      14 60 219
Adjunction formula      59 289 301
Affine bundle      22
Algebraic equivalence      185—186 373
Algebraic scheme      6 426
Ample, line bundle      211
Ample, vector bundle      212
Ample, vector bundle, generically      217
Ample, vector bundle, n-ample      215
Analytic space      383—384
Arithmetic genus and Todd class      288 354 361 362
Arithmetic genus, birational invariance of      292 294
Arithmetic genus, modular law      292
Arithmetic genus, uniqueness      292 293
Associativity for intersection multiplicities      123 129
Associativity for intersection products      132
Axioms for intersection products      97 207
Basis Theorem      268—279 386
Bezout’s theorem for plane curves      14
Bezout’s theorem, classical version      101 144—152
Bezout’s theorem, refined      223—226
Bidegree      146
Bivariant rational equivalence class(es) for schemes      395
Bivariant rational equivalence class(es), Gysin maps for      328
Bivariant rational equivalence class(es), products of      322
Bivariant rational equivalence class(es), pull-back of      322
Bivariant rational equivalence class(es), push-forward of      322
Bivariant rational equivalence class(es), Riemann — Roch for      365—366
Blow-up      435—437 439
Blow-up formula      114—117
Borsuk — Ulam theorem      239—240
Canonical class      67 300 302
Canonical class of singular variety      77—79
Canonical class, divisor      60 301 432
Canonical decomposition of intersection product      94—95 200—205 218—226
Cap product      131
Cap product for Borel — Moore homology      371 374—375
Cap product, refined      132—136 324—326
Cartesian product      24—25 428
Cartier divisor(s)      29 431—432
Cartier divisor(s), addition of      29
Cartier divisor(s), canonical section of      432
Cartier divisor(s), effective      19—20 30 432
Cartier divisor(s), intersection by      33—41
Cartier divisor(s), line bundle of      31—32 432
Cartier divisor(s), linear equivalence of      30
Cartier divisor(s), local equations for      29 432
Cartier divisor(s), principal      30 432
Cartier divisor(s), representing a pseudo-divisor      31—32
Cartier divisor(s), support of      30—31 432
Cartier divisor(s), Weil divisor of      29—32
Castelnuovo — Severi inequality      311—312
Cellular decomposition      23 25 378
Characteristic of a family of varieties      188 —194
Characteristic, homomorphism      199
Characteristic, section      199
Characteristic, variety      73
Chasles — Cayley — Brill — Hurwitz formula      310
Chern character      56—57 282—284
Chern character in topology      367
Chern character, localized      340—355 363—366
Chern class(es) of $\mathbb{P}^n$      59
Chern class(es) of dual bundle      54
Chern class(es) of exterior power      55 265
Chern class(es) of line bundle      41—43 51
Chern class(es) of non-singular variety      60
Chern class(es) of normal bundle      59—61
Chern class(es) of P(E)      59
Chern class(es) of singular varieties      77—79 376—377
Chern class(es) of symmetric powers      57 265
Chern class(es) of tensor products      54—56 265
Chern class(es) of vector bundles      50—63 252 255—256
Chern class(es) of virtual bundles      57 296
Chern class(es), blowing up      298—303
Chern class(es), geometric construction of      252 255—256
Chern class(es), localized      255
Chern class(es), localized of complex      347
Chern class(es), localized, top      244—246
Chern class(es), MacPherson      376—377
Chern class(es), Mather      79
Chern class(es), polynomials in      42 53 141
Chern class(es), polynomials in positive      216
Chern class(es), total      50 60
Chern class(es), uniqueness of      53
Chern class(es), vanishing of      50 216—217 365 367
Chern number      293—294
Chern polynomial      50
Chern roots      54
Chow ring      141 (see also “Intersection ring”)
Chow variety      16—17 186
circle      192
Class of hypersurfaces      84—85
Class of non-singular variety      84—85 253 261—262 277—278
Class of plane curve      188
Class of surface      193
Codimension      427
Coefficient of a variety in a cycle      11
Cohen — Macaulay      81 120 137 226 251 418—419
Cohomology for rational equivalence      143 324—326 331 390
Cohomology for rational equivalence with supports      325
Cohomology, operations      377
Coincidences, virtual number of      309
Commutativity for Chern classes      41 50
Commutativity for divisors      35—38
Commutativity for intersection multiplicities      123
Commutativity for intersection products      106—107 132
Compact supports for rational equivalence      184 368 378
Complete algebraic scheme      429
Complex of vector bundles      431
Complex, perfect      365—366
Conductor      167 289
Cone(s)      70 432—434
Cone(s) of sheaf      73
Cone(s), construction, for moving lemma      206
Cone(s), exact sequence of      72—73
Cone(s), normal      71 73 435
Cone(s), projective      432—434
Cone(s), projective completion of      70
Cone(s), pull-back of      433
Cone(s), Segre class of      70—73
Cone(s), support of      433—434
Cone(s), zero section of      433
Conics, plane      63—64 157—158 182—183 187—194 204 275
Conservation of number      180—185 193—194
Contribution of variety to an intersection product      94—95 151 224—225
Correspondence(s)      308—318 384—385 390—391
Correspondence(s) of morphism      306
Correspondence(s) on $\mathbb{P}^n$      315—316
Correspondence(s) on curves      310—312
Correspondence(s) on Grassmannians      317
Correspondence(s) on surfaces      317
Correspondence(s), (a, b)-      309
Correspondence(s), birational      312
Correspondence(s), degenerate      308—309
Correspondence(s), degree (or codimension) of      308
Correspondence(s), fixed points of      315—318
Correspondence(s), indices (or degrees) of      309
Correspondence(s), irreducible      306
Correspondence(s), principle      310
Correspondence(s), product of      305—308
Correspondence(s), push-forward and pull-back of      307
Correspondence(s), ring of      307—308
Correspondence(s), Severi’s formula for      317
Correspondence(s), topological      384—385
Correspondence(s), transpose of      306
Correspondence(s), valence of      309—310
Correspondence(s), Zeuthen, generalized      310
Critical point, moderate      246
Critical point, multiplicity of      124—125
Curve(s), rational normal      84 156
Curve(s), tangent to given varieties      187—194
Cycle, class      10
Cycle, class homomorphism or map      371—378
Cycle, class homomorphism or map and Gysin maps      382
Cycle, class homomorphism or map and specialization      400
Cycle, class homomorphism or map and topological intersections      378—385
Cycle, fundamental      15
Cycle, k-      10
Cycle, non-negative, positive      10 180 211
Cycle, of subscheme      15
Deformation      198—200
Deformation to normal cone or bundle      86—91
Deformation, generic      201—205
Degeneracy, class      254—263 329 330
Degeneracy, class, positivity of      260—261
Degeneracy, class, symmetric and skew-symmetric      216 259—260
Degeneracy, locus      243
Degeneracy, locus, existence of      215—216
Degree of cycle or equivalence class      13
Degree of cycle or variety on P"      42 144 149—150
Degree of Schubert variety      274
Degree, L-      211
Depth      251—252 255 256 418—419
Determinant      409—412
Determinantal class      249—253
Determinantal formula      249—253
Determinantal identities      419—424
Determinantal locus      243 419
Differentials, relative      429—430
DIMENSION      427
Dimension, pure      427
Dimension, relative      429
Dimension, relative for schemes over regular base      394 396
Distinguished varieties      94—95 120—121 184 200—205 218—226 232
Double point, class      166
Double point, formula      165—171 289
Double point, scheme      166—168
Double point, set      166
Dual variety, degree of      62—63 84 144 169—170
Duality for flag manifolds      276—277
Duality for Grassmann bundles      267 269 270 271
Duality, Grothendieck      367—368
Duality, Poincare      281 328 398 440
Duality, Serre      291 368
Dynamic intersections      128 195—209
Enumerative geometry      187—194 272—279
Envelope, Chow envelope      356
Equivalence of connected component      153—160
Equivalence of variety for an intersection product      94—95 203—204
Equivalence, relations on cycles      374 385—392
Euler characteristic of fibres of map      245—246
Euler characteristic of non-singular variety      60 136 362
Euler obstruction      78 376
Exact sequence for closed and open subschemes      21—22 186
Exact sequence for monoidal transforms      115
Exceptional divisor      435—436
Excess, intersection formula      102—106 113 327 382
Excess, intersection of divisors      36
Excess, normal bundle      102 113 225
Extension of ground field      101—102 240
Exterior products      24—25 397
Families of cycles and cycle, classes      176—180 362
Fano varieties, schemes      80 217 275—276
Fibre, product      428
Fibre, square      428
Fixed points of correspondence, perfect      315—317
Fixed points of correspondence, virtual number of      315
Flag bundle      68 247—248
Flag manifold or variety      23 68 219 270 276—277 310
Flat      413 (see also “Morphism flat”)
Function field      427
Functoriality of Gysin maps      108—112 113 134 330
Functoriality of intersection products      108—112
Functoriality of intersection products on non-singular varieties      130—136 141
Functoriality of push-forward and pull-back      11 18
General position      440—441
Genus of curve      60
Genus, Todd      60
Giambelli formula      262 265 267—268 271
Graph construction for complexes of vector bundles      340—346
Graph construction for vector bundle homomorphisms      88 347—348
Grassmann bundle      248—249 266—270 434
Grassmann variety      23 219 271—279
Grassmann variety of lines in $\mathbb{P}^3$      272—273
Grothendieck group of sheaves      17 281 285—286 354
Grothendieck group of vector bundles      57 280—281 294—295
Gysin formulas for flag bundles      247—248
Gysin formulas for Grassmann bundles      248—249
Gysin formulas for projective bundles      66
Gysin homomorphism for divisors      43—45
Gysin homomorphism for l.c.i. morphisms      113
Gysin homomorphism for morphisms to non-singular varieties      131 134 208
Gysin homomorphism for regular imbeddings      89—90 98 101
Gysin homomorphism for zero section of bundle      65—67 100
Gysin homomorphism or map from bivariant classes      328
Gysin homomorphism, refined      97—102 112—114 131 134
Herbrand quotients      407—411
Higher direct image      281
Higher K-theory      151 356 403—405
Hilbert — Samuel polynomial      42 81
Hodge theory      387—388
Homogeneous varieties      207 219—221 378 441
Homological equivalence      374 385—388
Homology theory for rational equivalence      10 324
Homology theory for topological K-theory      367
Homology theory, Borel — Moore      371 374—375
Hyperplane at infinity      433
Imbedding      426
Imbedding, obstructions to      60—61
Incidence correspondence or variety      189 273 275 277 295
Index theorem      289—290 388—389
Intermediate Jacobian      80 387 390
Intersecting with a pseudo-divisor      38
Intersecting, transversally      138 206 441
Intersection class      see “Intersection product”
Intersection class of cycle and pseudo-divisor      33 38
Intersection class, analytic      383—384
Intersection class, infinitesimal      199
Intersection class, positivity of      218—223
Intersection class, refined      94
Intersection class, topological      378 381—385
Intersection multiplicity or number for divisors      38—40 123—124 232—233 400
Intersection multiplicity or number for divisors and curves      125—126
Intersection multiplicity or number for plane curves      7—10 14
Intersection multiplicity or number of Serre      401—403
Intersection multiplicity or number on non-singular varieties      137—139 227—234
Intersection multiplicity or number on schemes over Dedekind rings      398
Intersection multiplicity or number on surfaces      40—41
Intersection multiplicity or number, fractional      125 142—143
Intersection multiplicity or number, uniqueness of      139 207
Intersection product and Tor      401—403
Intersection product for curves on a surface      60 76 95—96 198 203
Intersection product for divisors      111 208 224
Intersection product on $\mathbb{P}^n$      144—151 202—203
Intersection product on non-singular varieties      130—136
Intersection product on schemes over Dedekind rings      397—401
Intersection product on singular surfaces      39—40 125 142
Intersection product, part supported on a set      95 100—101 201—202 222
Intersection ring of $\mathbb{P}^n$      144—145
Intersection ring of algebraic scheme      324
Intersection ring of Cartesian product      141
Intersection ring of flag manifold      276—277
Intersection ring of Grassmann variety      270
Intersection ring of monoidal transform      142
Intersection ring of multiprojective space      146
Intersection ring of non-singular variety      140—144 151—152
Intersection ring of projective bundle      141
Intersection ring of quasi-projective scheme      143 324
Intersection ring of scheme over a Dedekind ring      397—399 405
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå