Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Fulton W. — Intersection theory
Fulton W. — Intersection theory



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Intersection theory

Àâòîð: Fulton W.

ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Àëãåáðà/Àëãåáðàè÷åñêàÿ ãåîìåòðèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2-nd edition

Ãîä èçäàíèÿ: 1984

Êîëè÷åñòâî ñòðàíèö: 470

Äîáàâëåíà â êàòàëîã: 23.03.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Inverse image scheme      428
Irreducible components of intersection      120 148—149
Jacobian subscheme      84 168—169
Jacobian variety      14 17 79—80 256—257 309
Key formula      114
Kodaira-Spencer homomorphism      199
Koszul complex      121—122 282 414—416 431
Lefschetz fixed point theorem      314
Length      8 120—122 137 145 363 406—407 411
Limit, cycle      196
Limit, intersection class, cycle      197
Limit, set      196
Line bundle      431
Linear system(s) and Segre classes      82—85
Linear system(s) on curves      43 262—263
Linear system(s), base of      83
Linear system(s), tangents to      61—62
Linkage (liaison)      59 165 173
Linking numbers      383
Littlewood — Richardson rule      265 267 271 423
Local complete intersection (l.c.i.)      112—114 439
Local ring of scheme along subvariety      426—427
Manin’s identity principle      312—313
Milnor number      124 245—246
Monoidal transform      114—117 142 298—302 435—437
Morphism      427—430
Morphism, birational      428
Morphism, dominant      427—428
Morphism, finite      429
Morphism, flat      18 429
Morphism, flat of relative dimension n      429
Morphism, local complete intersection (l.c.i.)      112—114 439
Morphism, perfect      286 367
Morphism, proper      11 429
Morphism, separated      428—429
Morphism, smooth      429—438
Motives      312—313
Moving Lemma      26 205—209
Multiple point formula      160 171
Multiplicity along a subscheme      81
Multiplicity along a subvariety      79—82 231
Multiplicity at a point      79—82 227—234
Multiplicity of a module w.r.t. endomorphism      407—411 415—416
Multiplicity, algebraic      79—82
Multiplicity, geometric      15
Multiplicity, one, criterion for      81 126—127 137—138 207 230
Multisecants      159—160
Neron — Severi group      385 388 400—401
Noether’s formula      230
Non-singular imbeddings into      438 439
Non-singular variety, scheme      130—152 429—430
Normal bundle      43 435 437—438
Normal cone      73 85—86 435—436
Normal cone, projectivized      433—434 436
Normal domain      419
Normal variety      429
Normalization      9 429
Numerical equivalence      374 376 383
Numerical equivalence, finite generation of      375—376
Order of zeros and poles      8—10
Order, function for domain      411—412
Orientation(s), orientation class(es)      326—331
Orientation(s), orientation class(es) for cones      336
Orientation(s), orientation class(es) for flat morphisms      326
Orientation(s), orientation class(es) for imbeddings of manifolds      372—373
Orientation(s), orientation class(es) for l.c.i. morphisms      326—327 382
Orientation(s), orientation class(es) for monoidal transforms      332—333
Orientation(s), orientation class(es) for morphisms to smooth schemes      329
Orientation(s), orientation class(es) for perfect morphisms      367
Orientation(s), orientation class(es) for regular imbeddings      326 378—379
Orientation(s), orientation class(es), compatibility of      330
Osculation      43
P-field      237—241
Partition      236
Partition, conjugate      263—264
Picard group      14 30 331
Picard variety      385
Pieri formula      264 266 271 422—423
Pieri theorem      315—316
Pinch point      168—170
Plucker formula      43
Point      7 427
Point, rational      427
Point, regular      427
Polar classes of hypersurface      84—85
Polar classes of non-singular variety      226—227 261—262
Polar locus      261—262
Polar surface      170
Polar variety      226—227
Porteous formula      254—263
Porteous formula, excess      258
Positivity of intersection products      210—234
Principal lines      315
Principal parts      43 144
Principal tangents      315
Principle of continuity      180—185 193—194 207
Projection      47 428 433
Projection formula for bivariant classes      323
Projection formula for Chern classes      41 51 53
Projection formula for divisors      34 39
Projection formula for intersection multiplicities      123 207
Projection formula for intersection products      98 132 134 135 140
Projection formula for sheaves      281
Projective bundle      434
Projective bundle, cycle class of      61
Projective bundle, rational equivalence on      64—65
Projective characters      252—253
Projective completion of cone or bundle      433
Proper component of intersection product      120 137 138
Proper intersection      35 119—126 136 137—139 205—209
Pseudo-divisor(s)      31—32
Pseudo-divisor(s) of Carrier divisor      31
Pseudo-divisor(s), line bundle of      31
Pseudo-divisor(s), pull-back of      32
Pseudo-divisor(s), section of      31
Pseudo-divisor(s), sums of      32
Pseudo-divisor(s), support of      31
Pseudo-divisor(s), Weil divisor class of      32
Pull-back flat, of cycles or cycle classes      18—21 113 134
Pull-back for pseudo-divisors      32
Pull-back for regular imbeddings or l.ci. morphisms      see “Gysin maps”
Pull-back from non-singular varieties      131 329
Push-forward, proper, of cycles and classes      11—14
Quadric surfaces      141 192—193
Quotient variety      20—21 23—24 142—143 313—314 331
Ramification      62 82 125 164—165 170—171 174 258
Rank      253 261—262 273
Rational equivalence      10 15—17 25—27 31
Rational equivalence for local rings      396
Rational equivalence on schemes      394 396
Real algebraic schemes      240—241
Real closed field      235—241
Real forms      240
Reduction to diagonal      130—131 151—152
Regular imbedding      437—438
Regular local ring      126—127 137 418
Regular section      414 431
Regular sequence      416—418
Residual intersection class      162 163 221 231—232
Residual intersection formula for top Chern class      245
Residual intersection theorem      160—165 333—337
Residual scheme      160—161 164—165 437
Residual scheme, normal cone to      163—164
Residue      384 389
Resolution of sheaf      281—282 440
Resultant      8—9 150—152 410—411 424
Riemann hypothesis for curves      312
Riemann — Hurwitz formula      62
Riemann — Kempf formula      79—80
Riemann — Roch      280—304 339—369
Riemann — Roch and Grothendieck duality      367—368
Riemann — Roch and specialization      400
Riemann — Roch and topological K-theory      367
Riemann — Roch and Tor      364—365
Riemann — Roch formula for complexes      363—365
Riemann — Roch, bivariant      365—366
Riemann — Roch, for abelian varieties      291 292
Riemann — Roch, for Cartesian products      360
Riemann — Roch, for curves      288—289 360
Riemann — Roch, for imbeddings      282—283 287—288 294 364 365
Riemann — Roch, for l.c.i. morphisms      349 353—354 363
Riemann — Roch, for projections      283 284—285 287 291—292 295 304
Riemann — Roch, for quasi-projective schemes      348—353
Riemann — Roch, for schemes over regular bases      395
Riemann — Roch, for singular varieties      339—369
Riemann — Roch, for surfaces      289 361
Riemann — Roch, for threefolds      290—291
Riemann — Roch, Grothendieck-      286 354
Riemann — Roch, Hirzebruch-      288—354
Riemann — Roch, homomorphism      287 349 353 357—359
Riemann — Roch, homomorphism, uniqueness of      354 360
Riemann — Roch, Lefschetz-      353
Riemann — Roch, without denominators      296—298 353
Ruled, join      147—152
Ruled, variety      143—144
Samuel multiplicity      79 81
Scheme(s) over a regular base      393—396
Scheme(s), algebraic      6 426
Scheme(s), smooth      429
Scheme(s), theoretic intersection      428
Schubert calculus      271—279
Schubert class      271
Schubert class, special      271 272
Schubert variety      269 270 271
Schubert variety in flag manifold      276—277
Schur polynomials (or S-functions)      216 217 243 263—266 419—424
Schur polynomials, skew      266 274
Scott, D. B., formula of      61
Section(s) of vector bundles      430—431 440—441
Section(s), sheaf of      430
Section(s), zero scheme of      430
Segre class of cone      70—73
Segre class of sheaf      73
Segre class of subscheme, subvariety      67 73—79 168—169
Segre class of vector bundle      47—49 63—64
Segre class, birational invariance of      74—76
Segre class, total      50
Segre imbedding      61 142 146
Self-intersection of divisors      67
Self-intersection, formula      44 60 103 167
Serre’s, intersection multiplicity      401—403 405
Serre’s, lemma      440—441
Seven’s formula      317
Signature      292—293 388—389
Singular (Jacobian) subscheme      84 168—169
Singularity of morphism      258 348
Singularity, effect on intersections      40 125 183
Singularity, ordinary      168—169
Singularity, Thom — Boardman      258
Smoothing cycles      297
Snapper polynomials      361
Solutions of equations, rationality and existence of      235—241
Special divisors      79—80 256—257
Special position, principle of      193
Specialization      33 105—106 176—180 398—401
Specialization of Segre classes      180
Specialization to normal cone      89—91
Splitting, construction      51
Splitting, principle      54—55
Stiefel — Whitney class      68 377
Subscheme, subvariety      6—7 426
Support of cycle      33
Support of divisor      30 31
Symmetric product of curves      27 79—80 180 262—263
Symmetric product of projective schemes      16—17 386
Tangent bundle      59—61 219—220 430
Tangent bundle, relative      429—430 438—439
Tangent bundle, relative, for projective and Grassrnann bundles      435
Tangent cone      227
Tangents to curves      187—194 133—134 273—274
Theta divisor      80
Thom — Porteous formula      254—263
Todd class of algebraic scheme      354 360—361
Todd class of curves      360
Todd class of fibres      362
Todd class of l.c.i. scheme      354
Todd class of non-singular variety      60 288 293
Todd class of surfaces      361
Todd class of vector bundle      56—57 283
Todd class ofcoverings      362—363
Todd genus      60
Tor      286
Tor and intersection products      401 —403
Tor and Riemann — Roch      364 401—403
Triple points      168—170
Unirational variety      179—180
Universal bundle      434
Vanishing theorems of Serre, Kodaira, Le Potier      291
Variety      6—7 426—427
Vector bundle(s), Chern class of      51—61
Vector bundle(s), direct sums of      430
Vector bundle(s), dual of      430
Vector bundle(s), exterior powers of      430
Vector bundle(s), locally free sheaf of      430
Vector bundle(s), pull-back of      430
Vector bundle(s), rational equivalence on      64
Vector bundle(s), Segre class of      47—50
Vector bundle(s), tautological, universal      434
Veronese, imbedding      60 63 146
Veronese, surface      60 157—158 187
Weil divisor of a rational function      10 30
Weil divisor, associated to a Cartier divisor      29—31
Weil divisor, associated to a pseudo-divisor      32
Whitney, sum formula      51 57—59
Whitney, umbrella      24
Young, diagram      263—264
Young, tableau      264
Young, tableau, expansion of      264—265
Zero scheme of section      243 430
Zero scheme of vector bundle homomorphism      243 439
Zero-cycles      16—17 386—387 390
Zero-divisors of bilinear forms      238
Zeuthen — Segre invariant      301
Zeuthen’s rule      9—10
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå