Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Rabin S. — AI Game Programming Wisdom 4 (AI Game Programming Wisdom (W/CD))
Rabin S. — AI Game Programming Wisdom 4 (AI Game Programming Wisdom (W/CD))



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: AI Game Programming Wisdom 4 (AI Game Programming Wisdom (W/CD))

Àâòîð: Rabin S.

Àííîòàöèÿ:

This book is just a list of tweaks to existing concepts such as FSMs and path finding. The more advanced concepts discussed do not have enough code examples or background info to really educate the reader. A lot of material is by academics that just want to get their names on published articles. For a field that has been hyped for 30 years and can now just barely manage to get a few soccer players to work together in a Wii game I guess we can't expect too much. Unless one is a professional game programmer, which I'm not, and contacts the authors there is almost nothing useful here.

For a basic AI overview, 'hands on ai with java' and 'programming game ai by example' are decent introductions for the programmer to the field depending on whether one prefers java or C++ programming. (most desktop 3d games are written in c++, many internet backend servers run in java).


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2008

Êîëè÷åñòâî ñòðàíèö: 658

Äîáàâëåíà â êàòàëîã: 15.05.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Dempster — Shafer Theory vs. Bayesian networks      356—357
Dempster's Rule      359 360—361
Dependency graphs      353—354
Desires, in Belief-Desire-Intention architecture      569 575—576
Development phase      287
Development phase, AI as priority in      4—5
Development phase, testing      288
Development phase, tips for      29—35
Diagnostic toolsets      39—44
Diagnostic toolsets, flexibility      40—41
Dialogue, scripting for      538
Difficulty levels, real-time strategy games      399—400
Dijkstra's algorithm      166—168
Distance, "look ahead" in racing games      446—447
Distance, computing distance in racetrack sectors      442
Distance, level-of-Detail (LOD) and      420—421
Documentation for scripting languages      526
DOM (Degree of Membership), fuzzy logic      91 93
Doors, covering exits maneuver      269—271
Doors, pathfinding and      197—199
DoPriorityPath() method      127—128
Driving lines, racetracks      440—442 455—456
Drop (pan) cameras      475
Dynamic animation lists      61
Eagles, behavior of      481
Economics, utility model in RTS games      402—410
Edges      163
Elevators, pathfinding and      197—199
Emergent behavior (EB), defined and described      19
Emergent behavior (EB), emergent maneuvers      233—246
Empathy      567 577—578
Enemies, analysis of enemy strength      225—227
Enemies, categorizing to determine strategic disposition      223—224
Enemies, engaging      221—232
Enemies, opponent-selection problem      393
Environments      367
Environments, neural nets and representation of      642—643
Evans, Richard, bio and contact info      xxiii
Events, Ball Hit and Ball Fielded events      487—493
Events, Event Templates      426
Events, global event responses      324—325
Events, heartbeats (scripting events)      548 552
Events, learning and event knowledge      432—434
Events, messages as      322—323
Events, reputation system based on event knowledge      426
Events, scripted "trigger" events      394
Events, state machine class      72—73
Evolution      see also "Genetic algorithms" "Genetic
Evolution strategy      560 562
Evolution, individual, population, and ecosystem levels of      631
Evolution, perfecting creatures with      629—639
Evolution, population size and      631 647
Evolution, robotics controllers      649
Evolution, unsupervised evolution      646
Expert systems, defined and described      5
Exploration-exploitation dilemma      565
Expression in animation      62
Expression, gestures      22
Fallbacks      32
Fast-storage systems      142—143 144
FCL (Fuzzy Control Language)      97—99
Feed-forward neural networks      641 649
Feedback learning      571—573 576—578 649
FFLL (Free Fuzzy Logic Library)      90—101
Finite state machines      see also "State Machine Language"
Finite state machines, class types in      71—73
Finite state machines, defined and described      6 7
Finite state machines, GUI tool for development of      71—77
Finite state machines, hierarchy of states and      32
Finite state machines, integrating into classes      76—77
Finite state machines, modeling simple state machines      73—74
Finite state machines, racing games      444
Finite state machines, simultaneous state machines      328
Finite state machines, switching state machines      328
Finite state machines, to describe squad and solo behavior      237
Finite state machines, typical states      393—394
Finite state machines, unit AI state diagnostic tool      42
Fire arcs      44
First-order logic, defined and described      6
First-person cameras      474
First-person shooter games      4
First-person shooter games, architectures      387—392
First-person sneaker games      387—392 394—395
Fish, behaviors of      482
Fitness functions      633 637 648
Flanking      215 267—269
Flight games, formations      272—281
Flight games, precomputing collisions in      88
Flocking, bird and fish behavior      482—483
Flocking, defined and described      6
Flocking, simple swarms as an alternative      202—208
Flooding and A* algorithm      135—136 143
Floyd's algorithm      166
Follow cameras      474 475
Formations      272—281
Formations, closest position calculation      274—275
Formations, common formations      272—273
Formations, composition of      274
Formations, falling-in      278
Formations, group pathing and movement      278—279
Formations, obstacles and      280—281
Formations, playbook      277—278
Formations, ranks      277
Formations, spacing distance      277
Frame pointers      514
Free Fuzzy Logic Library (FFLL)      90—101
Free Fuzzy Logic Library (FFLL), API functions of      96—97
Free Fuzzy Logic Library (FFLL), demo program      99—101
Friendly fire, avoiding incidents of      414—415
Full paths      124—125 131
Functions, in scripting language      514 516—519
Fuzzification, fuzzy logic      91
Fuzzy Control Language (FCL)      97—99
Fuzzy Control Programming Standards      90—91
Fuzzy logic      8
Fuzzy logic for tactical maneuver selection      251—252
Fuzzy logic in rule-based systems      312
Fuzzy logic, animal behavior and      483
Fuzzy logic, architecture for decision making      367—374
Fuzzy logic, Combs Method      373
Fuzzy logic, defined and described      7 369—371
Fuzzy logic, Free Fuzzy Logic Library (FFLL)      90—101
Fuzzy logic, Response Curves and set generation      79—82
Fuzzy logic, terminology defined      91
Fuzzy logic, vs. probabilistic Bayesian networks      356—357
Game AI vs. mainstream AI      9—10
Game analysis phase of planning process      377—378
Game design      13
Game trees      see "Decision trees"
Gas-nets      641
Genetic algorithms as unsupervised learning      644—645
Genetic algorithms, adaptive learning      561—562 571—575
Genetic algorithms, automated design and      649—650
Genetic algorithms, creating new generations      634—635
Genetic algorithms, crossover (genetic exchange)      632 633—634
Genetic algorithms, defined and described      7
Genetic algorithms, evaluation function      632 637
Genetic algorithms, fitness function      633 637 648
Genetic algorithms, genetic drift      647
Genetic algorithms, locally optimal behaviors      563
Genetic algorithms, mutations      630 632 634
Genetic algorithms, neural networks and      646 647—648
Genetic algorithms, rationale for use      656
Genetic algorithms, recurrent neural networks and      642
Genetic algorithms, resource requirements      635
Genetic algorithms, troll evolution case study      636—638
Genetic drift      647
Genetic programming      see also "Genetic algorithms"
Genetic programming, bio-genetic concepts and terms      629—631
Genetic programming, computational model of genetics      631—635
Genetic programming, defined and described      7
Genetic programming, evolution and      630—631
Genetic programming, genetic programming      632
Genetic programming, genotypes for computer organisms      632
Genetic programming, learning and      560 562
Genre, as context for AI      11—12
gestures      22
GetAnimation() query function      56—59
GNU Bison, parser creation      508
Goals, A* machines modifier goals      119—120 121
Goals, costs of      406—407
Goals, defined and described      307—308 376
Goals, formation and evaluation of      378—379
Goals, goal-based pathfinding      196—201
Goals, goal-directed reasoning      402—403
Goals, inference engine processing      307—310
Goals, prioritization of      379—380
Goals, real-time game architecture and      397—401
Goals, validity of and predictability      403
GoCap, game observation training method      570—585
God games      4
God games, learning in      615—616
Graphs, for A* algorithms      105
GROUPING      52—53
Groups, coordination of action      333—344
Groups, scheduling groups for load balancing      300—301
Guided missiles      417—418
Haiku      26—27
Hairpin turns      443 447—448
Hancock, John, bio and contact info      xxiii
Hardware, as limiting factor      5
Harmon, Vernon, bio and contact info      xxiv
Hash tables, blackboard architectures implemented as      341—343
Hash tables, NavMesh optimization and      183—184
Hash tables, optimizing A*      144
Hash tables, preprocessed navigation (pathfinding)      162
Heartbeats, scripting events      548 552
Hertel — Mehihorn algorithm      175—176
Heuristics, A* algorithm      106
Heuristics, Response Curves and      80—81
Hierarchy of states      32
Higgins, Daniel, bio and contact info      xxiv
History of AI      3—14
Hits and misses      411—418
hooks      24
Hunting games, animal behavior simulation      479—485
Hutchins, Jason, bio and contact info      xxiv
Identification, unit identification      42
IEExec interface      310—311
If statements, in scripting language engines      513
IF-THEN rules      305—313
If-then rules, multiple antecedents      312
If...endif      528
In-code timers      133—134
In-game learning      see "Learning"
Inference in belief networks      348—349
Inference, fuzzy logic      91
Inference, inference engines      305—313
Inference, non-player characters and      434
Influence maps, situation analysis and      250
Influence maps, strategic dispositions and      221—232 230—231
Inputs, state machine class      72—73
Insect behaviors      481
Intelligence      10—11
Intelligence, creating the illusion of a human opponent      16—20
Intentions, in Belief-Desire-Intention architecture      568—571
Interceptions      495—502
Interceptions, analysis of quadratic solutions      498—500
Interfaces, library interfaces for AI racers      462
Interfaces, neural networks and      642—643
Interfaces, scripting interfaces      311—312 544—546
Interfaces, Utility Model and      409
Interpreters, scripting language engines      511—515
Interpreters, scripting language engines, latent functions and      518—519
Intersections, open street racing and      460—461
Intro camera      474
Intruders, detecting      355
Inverse-kinematics (IK)      44
Inverse-kinematics (IK), animation controllers      389
IQ      10—11
Isla, Damian, bio and contact info      xxv
Island games, island hopping      400
Iterative deepening of A* algorithm      146—148
Java, scripting languages and      550—551
Keywords, scripting languages      527
Kharkar, Sandeep, bio and contact info      xxv
King, Kristin, bio and contact info      xxv
Kirby, Neil, bio and contact info      xxvi
KISS (Keep It Simple Stupid)      29—30
Knowledge sources (KSs) in blackboard architectures      335
Language learning systems      602—614
Language learning systems, MegaHAL conversation simulator      610—613
Language learning systems, naive keyword technique      609
Language learning systems, stochasitc language models      604—610
Language learning systems, value in gaming      603
Laramee, Francois Dominic, bio and contact info      xxvi
Learning as essence of intelligence      616—617
Learning, adaptation      558—565
Learning, AI development      xii—xiii
Learning, algorithm dependencies      564
Learning, behavior cloning      644
Learning, Belief-Desire-Intention architecture for      568—571
Learning, cluster map approach to training      582—583
Learning, defined and described      557—558
Learning, empathic learning      567 577—578
Learning, faked learning      558
Learning, feedback approach      571—573 576—578 649
Learning, generalizing      620
Learning, genetic algorithms      561—562 571—575 644—645
Learning, genetic programming      560 562
Learning, hard-coded components      644
Learning, imitation and      563
Learning, initiation of      567
Learning, innate behaviors of NPCs      622
Learning, interactive training      644
Learning, language learning systems      602—614
Learning, learning traps      576—577
Learning, locally optimal behaviors and      563
Learning, machine learning      8—9
Learning, N-Grams to predict behavior      596—601
Learning, non-player characters and event knowledge      432—434
Learning, observation as training      579—585
Learning, offline vs. online      645
Learning, optimization algorithms      559—560 562
Learning, overfitting (restrictive niche adaptation)      564—565
Learning, pattern recognition      586—595
Learning, performance measures for      561—562
Learning, player as part of the system      617—618
Learning, quality control and unpredictable behaviors      615—623
Learning, reinforcement learning (carrot and stick)      559—560 562—563 565 619—620 644
Learning, representational promiscuity approach      567—578
Learning, sequential prediction      586—595
Learning, skills involved in      567
Learning, supervised learning      644
Learning, testing behaviors of learning agents      615—623
Learning, training an AI to race      455—459
Learning, unsupervised learning      644—645
Level-of-Detail (LOD), classifications      421—425
Level-of-Detail (LOD), combat and      424—425
Level-of-Detail (LOD), distance and      420—421
Level-of-Detail (LOD), pathfinding and      423—424
Level-of-Detail (LOD), random walks and      424
Level-of-Detail (LOD), role-playing games      419—425
Lexers      506
Libraries, scripted libraries      525—526
Liden, Lars, bio and contact info      xxvi
Line-of-Sight (LOS), 3D landscapes and      83—89
Line-of-Sight (LOS), Ideal Sector Transform Matrix      84—85
Line-of-Sight (LOS), load balancing and LOS checks      298—304
Line-of-Sight (LOS), ray-landscape collision and      86—88
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå