Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Rabin S. — AI Game Programming Wisdom 4 (AI Game Programming Wisdom (W/CD))
Rabin S. — AI Game Programming Wisdom 4 (AI Game Programming Wisdom (W/CD))



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: AI Game Programming Wisdom 4 (AI Game Programming Wisdom (W/CD))

Àâòîð: Rabin S.

Àííîòàöèÿ:

This book is just a list of tweaks to existing concepts such as FSMs and path finding. The more advanced concepts discussed do not have enough code examples or background info to really educate the reader. A lot of material is by academics that just want to get their names on published articles. For a field that has been hyped for 30 years and can now just barely manage to get a few soccer players to work together in a Wii game I guess we can't expect too much. Unless one is a professional game programmer, which I'm not, and contacts the authors there is almost nothing useful here.

For a basic AI overview, 'hands on ai with java' and 'programming game ai by example' are decent introductions for the programmer to the field depending on whether one prefers java or C++ programming. (most desktop 3d games are written in c++, many internet backend servers run in java).


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2008

Êîëè÷åñòâî ñòðàíèö: 658

Äîáàâëåíà â êàòàëîã: 15.05.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Linkchild function of CAStar      109—110
Links in navigation meshes (NavMeshes)      184
Links in path planning grids      193—196
Lists, cheap      139—141 144
Lists, open and closed      106—107 114 139—141 148—149
load balancing      298—304
Load balancing in goal-based planning architecture      381
LOD      see "Level-of-Detail (LOD)"
logging      41
Logic, conditional logic and animation      55—56
Logic, first-order logic      6
Logic, fuzzy logic      7 8 90—101 367—374
Logic, probabilistic systems      346—357
Logic, problem solving and      23
Look-back cameras      475
Lookup tables, to speed fuzzification process      93
Loop statements in scripting language engines      514
Loop statements, debugging loops in scripting language      528
Loops, scripting language loop statements      514 528
Loops, think loops for squad AI      236
LOS      see "Line-of-Sight (LOS)"
Machine class, of state machine      71—72
Machine learning techniques      8—9
Macros for inference engine      308—309
Macros for State Machine Language      325—326
Main function of State Machine Language      327
Maneuvers      see "Tactical issues"
Manslow, John, bio and contact info      xxvi—xxvii
Maps for A* algorithms      105 121
Maps of streets and intersections for racing games      460—461
Maps, fast map analysis      211—212
Maps, nodemaps      193—196 200—201
Maps, obstacle maps      461—462
Maps, random maps and real-time games      400
Maps, STL maps and multimaps      57—60 61—62 65—68
Marginal utility      403—404
Master area groups      419
Match sizes, computing      588—589
Matrices, line-of-sight and ideal sector transform matrix      84—85
Matthews, James, bio and contact info      xxvii
MAX and MIN, fuzzy logic      91
Maximum time groups, for scheduling      300—301
McLean, Alex, bio and contact info      xxvii
MegaHAL conversation simulator      610—613
Membership functions, fuzzy logic      91 92
Memory, fast-storage systems      141—143
Memory, N-Gram requirements      598—599
Memory, navigation mesh optimizations      182—183
Memory, NavMesh node storage      182—183
Memory, pathfinding optimizations      122—131 137—139
Memory, Per-NPC long term-memory      430—432
Memory, pooling nodes      136—137 144
Memory, preprocessed navigation (pathfinding)      168—169
Memory, reputation systems and memory conservation      429—432
Message passing, team-based AI      264—265
Messaging, described      321—322
Messaging, message timers      322
Messaging, redundant message policy      324
Messaging, scoping messages      323—324
Messaging, State Machine Language and      321—329
Mika, Mike, bio and contact info      xxvii—xxviii
Missiles      417—418
Model/child relationships      94
Modifier goals and generic A* machines      119—120 121
Mommersteeg, Fri, bio and contact info      xxviii
Movement      see also "Flocking" "Formations" "Pathfinding" "Squads"
Movement of swarms      204—205
Movement, first-person shooter game architecture      387—388 390—391
Movement, fluid motion      64—70
Movement, tips for precomputing navigation      30—31
Multi-agent systems      6 8
Mutations      630 632 634
n-grams      596—601
N-Grams, data structure of      598—599
N-Grams, defined      596—597
N-Grams, memory resources required for      598—599
N-Grams, speech recognition applications      597 599
N-Grams, training of      599—600
Narrative, interfering with      32
Natural language, learning systems for      602—614
Natural language, natural language processing (NLP)      21—22
Navigation      see also "Pathfinding"
Navigation meshes (NavMeshes), $3\rightarrow 2$ merging algorithm      177—180 182
Navigation meshes (NavMeshes), build optimizations      183—184
Navigation meshes (NavMeshes), building      174—184
Navigation meshes (NavMeshes), described and defined      171—172
Navigation meshes (NavMeshes), designer control of      184
Navigation meshes (NavMeshes), Hertel — Mehlhorn algorithm      175—176
Navigation meshes (NavMeshes), links      184
Navigation meshes (NavMeshes), memory optimizations      182—183
Navigation meshes (NavMeshes), points of visibility and      173—174
Navigation meshes (NavMeshes), recursive subdivision of      180—182
Navigation, precomputing      30—31
NavMeshes      see "Navigation meshes (NavMeshes)"
Needs/Opportunities lists      376 377
Neural networks, automated design      649—650
Neural networks, defined and described      7
Neural networks, environment representation      642—643
Neural networks, feed forward networks      641
Neural networks, gas-nets      641
Neural networks, imitating random behavior variations      624—628
Neural networks, implementation of      641—642
Neural networks, learning, supervised and unsupervised      644—645
Neural networks, modularity      649
Neural networks, multi-level perceptron (MLP) neural nets      626
Neural networks, pattern recognition      640—641
Neural networks, recurrent networks      641
Neural networks, representation      646—648
Neural networks, robotic controllers      640—641 649
Neural networks, structures for      648
Neural networks, supervised back-propagation training      645—646
Neural networks, system design      648—650
Neutral networks      561—562
Nodemaps      193—196 200—201
nodes      163
Nodes in parse trees      507—509
Nodes, A* algorithm      105—106 123
Nodes, belief nodes      351—352
Nodes, blocked nodes      148—149
Nodes, cost of      106 146 149—150
Nodes, driving line nodes      440 455—456
Nodes, end nodes      164—165
Nodes, fitness, goal, and heuristic (f, g, and h) values of      106—107
Nodes, invalid nodes      114
Nodes, node graphs and strategic reasoning      211—220
Nodes, nodemaps      193—196 200—201
Nodes, optimization and      136—137 144 169
Nodes, placing path nodes      173
Nodes, pooling for optimization      136—137 144
Nodes, reducing number of      169
Nodes, weighted nodes in pathfinding      155—156
Noise, audio occlusion      395
Noise, contradictory training data      646
Non-player characters (NPCs) in rule-based systems      305—313
Non-player characters (NPCs), behavior and player expectations      620—621
Non-player characters (NPCs), learning and information sharing      432—434
Non-player characters (NPCs), personality and internal state      621
Non-player characters (NPCs), reputation systems for      426—435
Non-player characters (NPCs), waypoints and      211—220
O'Brien, John, bio and contact info      xxviii
Object management systems, scripting and      531—532
Objects, child objects      94
Observation, AI training methods      579—585
Obstacles in racing games      442—443 461—462 468—470
Obstacles, dynamic obstacles      392
Obstacles, dynamic obstacles and global pathfinding      389—390
Obstacles, formations and      280—281
Obstacles, navigating and      193—201
Obstacles, obstacle maps      461—462
Obstacles, squad tactics and      243—244
Offsets, transformation of      85—86
Opcodes and opcode handlers      511—513
Open-ended narratives, scripting for      530—540
Opinions, in Belief-Desire-Intention architecture      568 570
Opponents, creating believable      16—20
Opportunity costs      405
optimizations      see also "Memory"
Optimizations of fuzzy systems      371—373
Optimizations, A* algorithm      134—136 146—152
Optimizations, A* engines      133—145
Optimizations, data storage      121
Optimizations, distributed processing      290—297
Optimizations, hash tables      144 183—184
Optimizations, in-game learning algorithms      562 563
Optimizations, load balancing      298—304
Optimizations, navigation meshes (NavMeshes)      183—184
Optimizations, nodes and      136—137 144 169
Optimizations, pathfinding      122—131 133—145 169—170
Optimizations, performance      288
Optimizations, race car performance      456—458
Orders, team-based AI      264—265
Orkin, Jeff, bio and contact info      xxviii
Outflanking maneuver      267—269
Overfitting, distribution models and      626—627
Override mechanisms, racing games      458
Pan (drop) cameras      475
Parsers and parse trees, scripting language compilers      506—608 549 551
Parsers and parse trees, scripting language compilers, BindGen parse tree      517
Partial paths      149—150
Partitioning      see "Points of visibility (partitioning)"
Path lattice systems      see "Points of visibility (partitioning)"
Pathfinding      389 see "Obstacles"
Pathfinding, all-pairs shortest path problem      162
Pathfinding, blocker-overlap problem      190—191
Pathfinding, Catmull — Rom or cardinal splines for smoothing      443
Pathfinding, costs      161 162
Pathfinding, diagnostic tools      42—43
Pathfinding, driving lines on racetracks      441—442
Pathfinding, dynamic obstacles and global pathfinding      389—390
Pathfinding, enumerating possible routes in racing games      463—468
Pathfinding, fastest route between waypoints      190—191
Pathfinding, fine-tuning paths      128 131
Pathfinding, full paths      124—125 131
Pathfinding, goal-based pathfinding      196—201
Pathfinding, group formations and      274—281
Pathfinding, heuristic tests      161
Pathfinding, hierarchical pathfinding      169
Pathfinding, Level-of-Detail and      423—424
Pathfinding, Line-of-Sight in 3D landscapes      84—88
Pathfinding, local pathfinding      389—390
Pathfinding, memory optimizing      122—131
Pathfinding, multiple paths      149
Pathfinding, navigation meshes and      171—185
Pathfinding, nodemaps      193—196 200—201
Pathfinding, open terrain navigation      161—170
Pathfinding, optimizations for      122—131 133—145 169—170
Pathfinding, partial paths      149—150
Pathfinding, partitioning space for      161
Pathfinding, path management      128—130 131
Pathfinding, path planning grids      193—195
Pathfinding, pathfinding revolution      123
Pathfinding, points of visibility      163—174 173—174
Pathfinding, precomputing      30—31 161—170
Pathfinding, priority paths      127—128 131
Pathfinding, progressive-revolution or biased management      129 131
Pathfinding, pullback paths      253—259
Pathfinding, quick paths      123—124 131
Pathfinding, scripts      553—554
Pathfinding, search algorithms      166
Pathfinding, simple, cheap AI method for      155—160
Pathfinding, splice paths      125—127 131
Pathfinding, terrain analysis      163
Pathfinding, time-sliced pathfinding      123—131
Pathfinding, Utility Model and      409—410
Pathfinding, view search space diagnostic tool      42
Pathfinding, visibility and safe pathfinding      212—213
Pathfinding, waypoints and      151 186—191
Pathfinding, weighted nodes      155—156
Paths      see "Pathfinding"
Pattern recognition as intelligence      602—603
Pattern recognition, anticipation patterns      592
Pattern recognition, interfaces and      642—643
Pattern recognition, neural networks and      640—641
Pattern recognition, positioning patterns      591—592
Pattern recognition, sequential prediction      586—595
Pattern recognition, tracker patterns      592—593
Per-NPC long term-memory      430—432
Perceptual modeling      395
Performance, in-game learning performance measures      561—562
Performance, optimizing      288
Performance, scripting languages and      543—544
Performance, sequential prediction performance indicator      593
Periodic AI processing      292
Pinch points (ambushes)      216—218
Pinter, Marco, bio and contact info      xxix
Planning      30
Planning architecture      375—383
Planning systems      6 8
Planning, desires and goal formation      570—571
Planning, goal-directed reasoning and      403
Plans, planning architecture      375—383
Plans, planning architecture, forming and evaluating plans      380—381
Plausibility, belief theory concept      359
PlayAnim() function      65—68
Poiker, Falko, bio and contact info      xxix
Point-of-view, cameras      474—476
Points of visibility (partitioning)      163—164
Points of visibility (partitioning), navigation meshes and      173—174
Polling systems      46—47
Population-based incremental learners      562
Precomputing      see "Preprocessing"
Predictability and unpredictability      16—17
Prediction      see also "Unpredictability"
Prediction, N-Gram statistical models for      596—601
Prediction, natural language systems      604—606
Prediction, sequential prediction      586—595
Prediction, statistical predictors      587 596—601
Prediction, string-matching algorithm      587—591 594
Preprocessing, collisions in flight games      88
Preprocessing, compound features from simple features      643
Preprocessing, dynamic obstacles and      392
Preprocessing, neural networks and learning      643
Preprocessing, normalization of data      643
Preprocessing, pathfinding      30—31 161—170
Preprocessing, symmetry removal      643
Preprocessing, team-based AI and      266
Prioritization of animation      64—70
Priority paths      127—128 131
Probability, Bayesian networks and probabilistic reasoning      345—357
Probability, N-Gram statistical prediction models      596—601
Probability, unconditional distribution of random variables      625—626
Problem solving      21—28
Problem solving, creativity and      25—27
Problem solving, innovative problems      24—25
Problem solving, logic and      23
Problem solving, multiple-solution model      24—25
Processing, exclusion criteria      295—296
Processing, periodic vs. constant AI processing      292—293
PROD, fuzzy logic      91
Production possibilities curves      405—406
Production systems      6 7
Profiling, scheduling systems and      302
Programming, techniques and support for novices      524—527
Q-learning      563 565
Quality control and unpredictable learning AI      530—540
Quick paths      123—124 131
Rabin, Steve, bio and contact info      xxix
Racetracks, brake/throttle values      443
Racetracks, hairpin turns      443 447—448
Racetracks, interfaces defined in      439—440
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå